Name_____ Sec____

MATH 253

Exam 2

Spring 2009

Sections 200,501,502

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1-9	/54	11c	/10
10	/10	11d	/10
11a	/10	11e	/ 6
11b	/10	Total	/104

- **1**. Find the volume under $z = xy^2$ above the rectangle $1 \le x \le 2$ and $0 \le y \le 2$.
 - **a**. 2
 - **b**. 4
 - **c**. 6
 - **d**. 12
 - **e**. $\frac{16}{3}$

- **2**. (Non-Honors Only) Compute $\int_0^2 \int_0^y \int_x^y x dz dx dy$.
 - **a**. $\frac{1}{2}$
 - **b**. $\frac{2}{3}$
 - **c**. $\frac{3}{4}$
 - **d**. $\frac{4}{5}$
 - **e**. $\frac{5}{6}$

- **3**. Compute $\iiint_R z \, dV$ over the region R in the first octant bounded by $y = 9 x^2$, z = 2 and the coordinate planes.
 - **a**. 36
 - **b**. 54
 - **c**. 72
 - **d**. 96
 - **e**. 108
- **4**. Find the mass of the plate bounded by the curves $x = y^2$ and x = 4, if the surface mass density is $\rho = x$.

- **b**. $\frac{64}{3}$
- **c**. $\frac{128}{3}$
- **d**. $\frac{64}{5}$
- **e**. $\frac{128}{5}$

5. Find the center of mass of the plate bounded by the curves $x = y^2$ and x = 4, if the surface mass density is $\rho = x$.

a.
$$(\bar{x}, \bar{y}) = \left(\frac{12}{7}, 0\right)$$

b.
$$(\bar{x}, \bar{y}) = (2, 0)$$

c.
$$(\bar{x}, \bar{y}) = \left(\frac{20}{7}, 0\right)$$

d.
$$(\bar{x}, \bar{y}) = \left(\frac{24}{7}, 0\right)$$

e.
$$(\bar{x}, \bar{y}) = \left(\frac{512}{7}, 0\right)$$

6. A styrofoam board is cut in the shape of the right half of the cardioid $r=1-\sin\theta$. A static electricity charge is put on the board whose surface charge density is given by $\rho_e=x$. Find the total charge on the board $Q=\iint \rho_e \, dA$.

- **a**. 0
- **b**. $\frac{2}{3}$
- **c**. $\frac{4}{3}$
- **d**. $\frac{8\pi}{3}$
- **e**. $\frac{16\pi}{3}$

7. Find the volume of the solid above the cone $z = \sqrt{x^2 + y^2}$ below the hemisphere $x^2 + y^2 + z^2 = 4$.

- **b**. $\frac{8\pi}{3}\sqrt{2}$
- **c**. $\frac{16\pi}{3}$
- **d**. $\frac{8\pi}{3}(2-\sqrt{2})$
- **e**. $\frac{8\pi}{3}(2+\sqrt{2})$

- **8**. Compute $\int_0^2 \int_{y^2}^4 y e^{x^2} dx dy$. HINT: Interchange the order of integration.
 - **a**. $\frac{1}{4}e^{16}$
 - **b**. $\frac{1}{4}(e^{16}-1)$
 - **c**. $\frac{1}{2}(1-e^{16})$
 - **d**. $\frac{1}{4}(e^4-1)$
 - **e**. $\frac{1}{2}(1-e^4)$

- **9**. Compute $\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} z \cos\left[\left(x^2+y^2+z^2\right)^2\right] dz dy dx.$ HINT: Convert to spherical coordinates.
 - **a.** $\frac{\pi}{8} \sin(4)$
 - **b**. $\frac{\pi}{16} \sin(4)$
 - **c**. $\frac{\pi}{4}\sin(16)$
 - **d**. $\frac{\pi}{8}\sin(16)$
 - **e**. $\frac{\pi}{16} \sin(16)$

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (10 points) Compute $\iint y dx dy$ over the diamond shaped region bounded by the curves

$$y = 4x \qquad y = \frac{x}{4} \qquad y = \frac{1}{x} \qquad y = \frac{4}{x}$$

y=4x $y=\frac{x}{4}$ $y=\frac{1}{x}$ $y=\frac{4}{x}$ HINT: Let $u^2=xy$ and $v^2=\frac{y}{x}$. Solve for x and y.

11. Consider the surface, S, given parametrically by

$$\vec{R}(p,q) = \left(\frac{1}{2}p^2, q^2, pq\right)$$
 for $0 \le p \le 3$ and $0 \le q \le 2$.

a. (10 points) Find \vec{e}_p , \vec{e}_q , \vec{N} , and $\left| \vec{N} \right|$. Simplify $\left| \vec{N} \right|$ by looking for a perfect square.

b. (10 points) Compute the surface area of the surface, *S*.

HINT:
$$A = \int \int 1 dS$$

Recall $\vec{R}(p,q) = \left(\frac{1}{2}p^2, q^2, pq\right)$ for $0 \le p \le 3$ and $0 \le q \le 2$.

c. (10 points) Compute the mass of the surface, S, if the surface mass density is $\rho(x,y,z)=z$. HINT: $M=\int\int\rho\,dS$

d. (10 points) Compute the flux through the surface, S, of the vector field $\vec{F} = (2x, 2y, z)$ if the surface is oriented down and out.

HINT: $Flux = \int \int \vec{F} \cdot d\vec{S}$

e. (6 points HONORS ONLY) Find the equation of the plane tangent to the surface,S, at the point where (p,q)=(2,1).