Name	ID	Section	1-7	
MATH 253	EXAM 3	Spring 1998	8	
Sections 501-503		P. Yasskin	9	
Multiple Choice: (5 points each)			10	

- 1. If F = (xy, yz, xz) then $\vec{\nabla} \cdot \vec{F} =$
 - **a.** y z + x
 - **b**. (-y, z, -x)
 - **c.** x + y + z
 - **d**. (-y, -z, -x)
 - **e**. -x + y z
- **2**. If F = (xy, yz, xz) then $\vec{\nabla} \times \vec{F} =$
 - **a.** y z + x
 - **b**. (-y, z, -x)
 - **c.** x + y + z
 - **d**. (-y, -z, -x)
 - **e.** -x + y z
- 3. Compute the line integral $\int y dx x dy$ counterclockwise around the semicircle $x^2 + y^2 = 4$ from (2,0) to (-2,0). (HINT: Parametrize the curve.)
 - **a**. -4π
 - **b**. -2π
 - C. π
 - **d**. 2π
 - e. 4π
- **4**. Compute the line integral $\int \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = \left(\frac{1}{x}, \frac{1}{y}\right)$ along the curve $\vec{r}(t) = \left(e^{\cos(t^2)}, e^{\sin(t^2)}\right)$ for $0 \le t \le \sqrt{\pi}$. (HINT: Find a potential.)
 - **a**. -2
 - **b**. 0
 - c. $\frac{2}{e}$
 - **d**. 1
 - **e**. π

- **5**. Compute $\oint (5x + 3y) dx + (x 2y) dy$ counterclockwise around the edge of the rectangle $1 \le x \le 5$, $3 \le y \le 6$. (HINT: Use Green's Theorem.)
 - **a**. 36
 - **b**. 24
 - **c**. 12
 - **d**. -24
 - **e**. -36
- **6.** Compute $\iint_{\partial C} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = (zx^3, zy^3, z^2(x^2 + y^2))$ over the complete surface of the solid cylinder $C = \{(x, y, z) \mid x^2 + y^2 \le 4, \ 0 \le z \le 3\}$.
 - **a**. 360π
 - **b**. 180π
 - **c**. 90π
 - **d**. 60π
 - **e**. 30π
- 7. If $f(x,y,z) = x\sin(yz) y\cos(xz) + z\tan(xy)$ then $\vec{\nabla} \times \vec{\nabla} f =$
 - **a.** $z\sin(yz) + z\cos(xz) + xy\sec^2(xy)$
 - **b**. $\sin(yz) \cos(xz) + \tan(xy)$
 - $\mathbf{c}. \cos(yz) + \sin(xz) + \sec^2(xy)$
 - **d**. 0
 - e. Does not exist.

8. (25 points) Green's Theorem states that if R is a nice region in the plane and ∂R is its boundary curve traversed counterclockwise then

$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{\partial R} P dx + Q dy$$

Verify Green's Theorem if $P = -y^3$ and $Q = x^3$ and R is the region inside the circle $x^2 + y^2 = 9$.

- **8a**. (5 points) Compute $\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}$. (HINT: Use rectangular coordinates.)
- **8b**. (10 points) Compute $\iint\limits_{R} \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy.$
- a. (HINT: Switch to polar coordinates and don't forget the Jacobian.)

8c. (10 points) Compute $\oint P dx + Q dy$. (HINT: Parametrize of the boundary circle.) ∂R

9. (30 points) Stokes' Theorem states that if S is a surface in 3-space and ∂S is its boundary curve traversed counterclockwise as seen from the tip of the normal to S then

$$\iint\limits_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint\limits_{\partial S} \vec{F} \cdot d\vec{S}$$

Verify Stokes' Theorem if $F = (-yx^2, xy^2, x^2 + y^2)$ and S is the part of the cone $z = \sqrt{x^2 + y^2}$ below z = 2 with normal pointing in and up.

9a. (5 points) Compute $\vec{\nabla} \times \vec{F}$. (HINT: Use rectangular coordinates.)

9b. (10 points) Compute $\iint_{\vec{V}} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$.

a. (HINT: Here is the parametrization of the cone and the steps you should use. Remember to check the orientation of the surface.)

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$$

$$\vec{R}_r =$$

$$\overrightarrow{R}_{\theta} =$$

$$\vec{N} =$$

$$(\vec{\nabla} \times \vec{F})(\vec{R}(r,\theta)) =$$

$$\iint\limits_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

9c. (15 points) Compute $\oint_{c} \vec{F} \cdot d\vec{s}$. Recall $F = (-yx^2, xy^2, x^2 + y^2)$.

(HINT: Parametrize of the boundary circle. Remember to check the orientation of the curve.)

$$\vec{r}(\theta) =$$

$$\vec{v}(\theta) =$$

$$\vec{F}(\vec{r}(\theta)) =$$

$$\oint_{\partial S} \vec{F} \cdot d\vec{s} =$$

10. (10 points)

The spider web at the right is the graph of the hyperbolic paraboloid z = xy. It may be parametrized as

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2\sin\theta\cos\theta).$$

Find the area of the web for $r \le \sqrt{8}$.

