Sections 501-503

Solutions

P. Yasskin

Multiple Choice (5 points each) No Partial Credit Part I:

1.
$$\lim_{n\to\infty} \frac{n^2}{n^2 + (-1)^n n} =$$

- correctchoice **b**. 1
- **c**. 2
- **d**. 4
- e. divergent

$$\lim_{n \to \infty} \frac{n^2}{n^2 + (-1)^n n} = \lim_{n \to \infty} \frac{1}{1 + \frac{(-1)^n}{n}} = 1$$

 $\sum^{\infty} \frac{(-1)^n n}{n^2 + 1}$ 2. The series

- a. absolutely convergent
- b. conditionally convergent correctchoice
- c. divergent
- d. none of these

 $\sum_{n=0}^{\infty} \frac{(-1)^n n}{n^2 + 1}$ is an alternating, decreasing series and $\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$.

So it is convergent by the Alternating Series Test.

Further, the related absolute series is $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$ which is divergent by the

Integral Test, since $\int_{1}^{\infty} \frac{n}{n^{2}+1} dn = \left[\frac{1}{2} \ln(n^{2}+1)\right]_{1}^{\infty} = \infty.$ Thus the original series $\sum_{n=1}^{\infty} \frac{(-1)^{n}n}{n^{2}+1}$ is conditionally convergent.

 $\sum_{n=1}^{\infty} \frac{n^2}{n^2+1} =$

Since $\lim_{n=1} \frac{n^2}{n^2+1} = 1 \neq 0$, the series e. divergent correctchoice

 $\sum_{n=0}^{\infty} \frac{n^2}{n^2 + 1}$ is divergent by the *n*th Term Divergence Test.

4. The series
$$\sum_{n=1}^{\infty} \frac{n}{n^{1.5} + 1}$$
 is

a. convergent by the Comparison Test with
$$\sum_{n=1}^{\infty} \frac{1}{n^{.5}}.$$

b. conv. by the Limit Comp. Test with
$$\sum_{n=1}^{\infty} \frac{1}{n^{.5}}$$
 but not by the Comp. Test.

c. divergent by the Comparison Test with
$$\sum_{n=1}^{\infty} \frac{1}{n^{.5}}.$$

d. div. by the Limit Comp. Test with
$$\sum_{n=1}^{\infty} \frac{1}{n^{.5}}$$
 but not by the Comp. Test. correctchoice

For large
$$n$$
, the term $a_n = \frac{n}{n^{1.5} + 1}$ is approximately like $b_n = \frac{1}{n^{.5}}$ so we want to compare to $\sum_{n=1}^{\infty} \frac{1}{n^{.5}}$ which is a divergent p -series since $p = .5 < 1$. Since $\frac{n}{n^{1.5} + 1} < \frac{n}{n^{1.5}} = \frac{1}{n^{.5}}$, the Comparison Test does not apply. So we try the Limit Comparison Test: Since $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n^{1.5} + 1} \bullet \frac{n^{.5}}{1} = \lim_{n \to \infty} \frac{n^{1.5}}{n^{1.5} + 1} = 1$, the series $\sum_{n=1}^{\infty} \frac{n}{n^{1.5} + 1}$ also diverges.

5.
$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} =$$
 (Note: $\frac{2}{4n^2 - 1} = \frac{1}{2n - 1} - \frac{1}{2n + 1}$)

b.
$$\frac{1}{2}$$

We first compute the partial sum:

$$S_k = \sum_{n=1}^k \frac{2}{4n^2 - 1} = \sum_{n=1}^k \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right)$$

$$= \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \left(\frac{1}{2k - 3} - \frac{1}{2k - 1} \right) + \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right) = 1 - \frac{1}{2k + 1}$$
So the infinite sum is
$$\sum_{n=1}^\infty \frac{2}{4n^2 - 1} = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \left(1 - \frac{1}{2k + 1} \right) = 1$$

- **6**. Consider the Taylor series about x = 0 for $f(x) = e^{-x}$. What is the minimum degree of the Taylor polynomial you should use to approximate $e^{-0.1}$ to within $\pm 10^{-8}$? Give the degree n of the highest power of x that you need to **keep**.
 - **a**. 1
 - **b**. 3
 - **c**. 5 correctchoice
 - **d**. 7
 - **e**. 9

Since
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

we have
$$e^{-x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \cdots$$
 and

$$e^{-0.1} = \sum_{n=0}^{\infty} (-1)^n \frac{(0.1)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{10^{-n}}{n!} = 1 - 10^{-1} + \frac{10^{-2}}{2} - \frac{10^{-3}}{6} + \frac{10^{-4}}{24} - \frac{10^{-5}}{120} + \frac{10^{-6}}{720} + \frac{10^{-6}}{120} + \frac{10^{-6$$

Since this is an alternating decreasing series, the error is bounded by the next term.

Since $\frac{10^{-5}}{120} > 10^{-8} > \frac{10^{-6}}{720}$, we must keep up to the n = 5 term.

- **7**. Find the volume of the solid under the plane z = x and above the triangle with vertices (1,1), (2,1) and (1,4).
 - **a**. 1
 - **b**. 2 correctchoice
 - **c**. 3
 - **d**. 4
 - **e**. $\frac{9}{2}$

The base is shown. The top is z = x.

The diagonal side of the base has slope m = -3.

So its equation is y-1=-3(x-2) or y=-3x+7.

$$V = \int_{1}^{2} \int_{1}^{-3x+7} x \, dy \, dx = \int_{1}^{2} \left[xy \right]_{y=1}^{-3x+7} \, dx = \int_{1}^{2} \left[x(-3x+7) \right] - \left[x \right] \, dx$$
$$= \int_{1}^{2} -3x^{2} + 6x \, dx = \left[-x^{3} + 3x^{2} \right]^{2} = \left[-8 + 12 \right] - \left[-1 + 3 \right] = 2$$

- **8**. A 5 lb mass moves up the helix $\vec{r}(t) = (3\cos t, 3\sin t, 4t)$ for $0 \le t \le \pi$. Find the work done against the force of gravity $\vec{F} = -5\hat{k}$.
 - **a**. -4π
 - **b**. -5π
 - **c**. -20π correct choice
 - d. -80π
 - **e**. -100π

$$\vec{v} = (-3\sin t, 3\cos t, 4) \qquad \vec{F} = (0, 0, -5)$$

$$W = \int_{0}^{\pi} \vec{F} \cdot \vec{v} dt = \int_{0}^{\pi} -20 dt = -20\pi$$

9. Compute the line integral $\int \vec{F} \cdot d\vec{s}$ counterclockwise around the circle

$$x^2 + y^2 = 4$$
 for the vector field $\vec{F} = (-y(x^2 + y^2), x(x^2 + y^2)).$

- **a**. 2π
- **b**. 4π
- c. 8π
- **d**. 16π
- **e.** 32π correct choice

$$\int \vec{F} \cdot d\vec{s} = \int P dx + Q dy \quad \text{where} \quad P = -y(x^2 + y^2) = -yx^2 - y^3 \quad \text{and}$$

$$Q = x(x^2 + y^2) = x^3 + xy^2.$$

Let *D* denote the interior of the circle. Then, by Green's Theorem,

$$\int_{C} \vec{F} \cdot d\vec{s} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} (3x^2 + y^2) - (-x^2 - 3y^2) dx dy = \iint_{D} (4x^2 + 4y^2) dx dy$$

Switch to polar coordinates. $x^2 + y^2 = r^2$ $dx dy = r dr d\theta$ So:

$$\int_{0}^{1} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \int_{0}^{2} 4r^{2} r dr d\theta = 2\pi [r^{4}]_{0}^{2} = 32\pi$$

10. right half of the cardioid $r = 1 + \sin \theta$ and the *y*-axis if the mass density is $\rho = 3x$.

d.
$$\frac{\pi}{2}$$

e.
$$\frac{1}{2}$$

$$M = \int \int \rho \ dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{1+\sin\theta} 3(r\cos\theta) \ r dr d\theta = \int_{-\pi/2}^{\pi/2} \cos\theta \left[r^{3}\right]_{r=0}^{1+\sin\theta} d\theta$$
$$= \int_{-\pi/2}^{\pi/2} \cos\theta (1+\sin\theta)^{3} d\theta = \frac{(1+\sin\theta)^{4}}{4} \Big|_{-\pi/2}^{\pi/2} = \left[\frac{2^{4}}{4}\right] - \left[\frac{0}{4}\right] = 4$$

11. Find the area of the piece of the paraboloid $z = 9 - x^2 - y^2$ in the first octant.

a.
$$\frac{\pi}{16} [(37)^{3/2} - 1]$$

b.
$$\frac{\pi}{24} [(37)^{3/2} - 1]$$
 correct

c.
$$\frac{\pi}{16}(37)^{3/2}$$

d.
$$\frac{\pi}{4}(37)^{3/2}$$

e.
$$\frac{9\pi}{4}$$

The paraboloid may be parametrized as

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 9 - r^2)$$

The tangent and normal vectors are

$$\vec{R}_r = (\cos\theta, \sin\theta, -2r)$$

$$\vec{R}_{\theta} = (-r\sin\theta, r\cos\theta, 0)$$

$$\vec{N} = \vec{R}_r \times \vec{R}_\theta = (2r^2 \cos \theta, 2r^2 \sin \theta, r)$$

The length of the normal is

$$|\vec{N}| = \sqrt{4r^4 \cos^2 \theta + 4r^4 \sin^2 \theta + r^2} = \sqrt{4r^4 + r^2} = r\sqrt{4r^2 + 1}$$

So the area is
$$A = \iint |\vec{N}| dr d\theta = \int_0^{\pi/2} \int_0^3 r \sqrt{4r^2 + 1} dr d\theta$$

= $\frac{\pi}{2} \left[\frac{2}{3} \cdot \frac{1}{8} (4r^2 + 1)^{3/2} \right]_0^3 = \frac{\pi}{24} \left[(37)^{3/2} - 1 \right]$

Part II: Work Out Problems Partial credit will be given.

(10 points) The spiral at the right is made from an infinite number of semicircles whose centers are all on the *x*-axis. The radius of each semicircle is half of the radius of the previous semicircle.

a. Consider the infinite sequence of points where the spiral crosses the x-axis. What is the x-coordinate of the limit of this sequence?

$$2 - 1 + \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \dots = \sum_{n=0}^{\infty} 2\left(-\frac{1}{2}\right)^n = \frac{2}{1 + \frac{1}{2}} = \frac{4}{3}$$

b. What is the total length of the spiral (with an infinite number of semicircles)? Or, is the length infinite?

Each semicircle has length $L_n = \pi r_n$ where the radii are $r_n = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots$.

So the total length is $L = \sum_{n=0}^{\infty} \pi r_n = \sum_{n=0}^{\infty} \pi \left(\frac{1}{2}\right)^n = \frac{\pi}{1 - \frac{1}{2}} = 2\pi.$

- 13. (15 points) Find the interval of convergence for the series $\sum_{n=2}^{\infty} \frac{(x-3)^n}{2^n n \ln n}$
 - **a.** (2 pts) The center of convergence is c = 3
 - b. (7 pts) Find the radius of convergence. (Name the test you use.)

We apply the ratio test:
$$a_n = \frac{(x-3)^n}{2^n n \ln n} \qquad a_{n+1} = \frac{(x-3)^{n+1}}{2^{n+1} (n+1) \ln(n+1)}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{2^{n+1} (n+1) \ln(n+1)} \frac{2^n n \ln n}{(x-3)^n} \right|$$

$$= \frac{|x-3|}{2} \lim_{n \to \infty} \frac{n}{n+1} \lim_{n \to \infty} \frac{\ln n}{\ln(n+1)} = \frac{|x-3|}{2} \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}} \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n+1}}$$

$$= \frac{|x-3|}{2} (1)(1) = \frac{|x-3|}{2}$$

The series converges if $\rho = \frac{|x-3|}{2} < 1$ or |x-3| < 2

$$R = \underline{2}$$

c. (2 pts) Check the left endpoint. (Name the test you use.)

$$x = 3 - 2 = 1$$
 The series becomes
$$\sum_{n=2}^{\infty} \frac{(-2)^n}{2^n n \ln n} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}.$$
 This is an alternating, decreasing series and
$$\lim_{n \to \infty} \frac{1}{n \ln n} = 0.$$

So the series converges by the Alternating Series Test.

d. (2 pts) Check the right endpoint. (Name the test you use.)

$$x = 3 + 2 = 5$$
 The series becomes $\sum_{n=2}^{\infty} \frac{(2)^n}{2^n n \ln n} = \sum_{n=2}^{\infty} \frac{1}{n \ln n}$. $\int_{2}^{\infty} \frac{1}{n \ln n} dn = \int_{\ln 2}^{\infty} \frac{1}{u} du = [\ln u]_{\ln 2}^{\infty} = \infty$. $u = \ln n$ $du = \frac{1}{n} dn$

So the series diverges by the Integral Test.

e. (2 pts) The interval of convergence is [1,5) or $1 \le x < 5$.

14. (10 points) Let *V* be the solid hemisphere $x^2 + y^2 + z^2 \le 4$ for $z \ge 0$. Let *H* be the hemisphere surface $x^2 + y^2 + z^2 = 4$ for $z \ge 0$.

Let *D* be the disk $x^2 + y^2 \le 4$ with z = 0.

Notice that H and D form the boundaryof V with outward normal provided H is oriented upward and D is oriented downward. Then Gauss' Theorem states

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \ dV = \iint\limits_{H} \vec{F} \cdot d\vec{S} + \iint\limits_{D} \vec{F} \cdot d\vec{S}$$

Compute $\iint \vec{F} \cdot d\vec{S}$ for $\vec{F} = (x^3 + y^2 + z^2, y^3 + x^2 + z^2, z^3 + x^2 + y^2)$ using

one of the following methods: (Circle the method you choose.)

- Method I: Parametrize H and compute $\iint \vec{F} \cdot d\vec{S}$ explicitly.
- Method II: Parametrize D, compute $\iint_{\Sigma} \vec{F} \cdot d\vec{S}$ and $\iiint_{V} \vec{\nabla} \cdot \vec{F} \ dV$ and solve for $\iint \vec{F} \cdot d\vec{S}.$

(You don't want to do it this way!) Parametrize H: Method I:

$$\vec{R}(\varphi,\theta) = (2\sin\varphi\cos\theta, 2\sin\varphi\sin\theta, 2\cos\varphi) \qquad 0 \le \varphi \le \frac{\pi}{2} \qquad 0 \le \theta \le 2\pi$$

$$\vec{R}_{\varphi} = (2\cos\varphi\cos\theta, 2\cos\varphi\sin\theta, -2\sin\varphi)$$

$$\vec{R}_{\theta} = (-2\sin\varphi\sin\theta, \ 2\sin\varphi\cos\theta, \ 0)$$

$$\vec{N} = \left(4\sin^2\varphi\cos\theta, 4\sin^2\varphi\sin\theta, 4\sin\varphi\cos\varphi\right)$$

$$\vec{F} = (x^3 + y^2 + z^2, y^3 + x^2 + z^2, z^3 + x^2 + y^2)$$

=
$$(8\sin^3\varphi\cos^3\theta + 4\sin^2\varphi\sin^2\theta + 4\cos^2\varphi, 8\sin^3\varphi\sin^3\theta + 4\sin^2\varphi\cos^2\theta + 4\cos^2\varphi, 8\cos^3\varphi + 4\sin^2\varphi\cos^2\theta + 4\sin^2\varphi\sin^2\theta)$$

- $\vec{F} \cdot \vec{N} = (8\sin^3\varphi\cos^3\theta + 4\sin^2\varphi\sin^2\theta + 4\cos^2\varphi)(4\sin^2\varphi\cos\theta) + (8\sin^3\varphi\sin^3\theta + 4\sin^2\varphi\cos^2\theta)$ $+(8\cos^3\varphi + 4\sin^2\varphi)(4\sin\varphi\cos\varphi)$
 - $= 16[2\sin^5\varphi\cos^4\theta + \sin^4\varphi\sin^2\theta\cos\theta + \cos^2\varphi\sin^2\varphi\cos\theta + 2\sin^5\varphi\sin^4\theta + \sin^4\varphi\cos^2\theta\sin\theta$ $+\cos^2\varphi\sin^2\varphi\sin\theta + 2\cos^4\varphi\sin\varphi + \sin^3\varphi\cos\varphi$
 - $= 16[2\sin^5\varphi\cos^4\theta + \sin^4\varphi\sin^2\theta\cos\theta + \cos^2\varphi\sin^2\varphi\cos\theta + 2\sin^5\varphi\sin^4\theta + \sin^4\varphi\cos^2\theta\sin\theta$ $+\cos^2\varphi\sin^2\varphi\sin\theta + 2\cos^4\varphi\sin\varphi + \sin^3\varphi\cos\varphi$

$$\iint_{U} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \vec{F} \cdot \vec{N} \ d\varphi \ d\theta$$

$$= 16 \int_{0}^{2\pi} \int_{0}^{\pi/2} [2\sin^{5}\varphi \cos^{4}\theta + 2\sin^{5}\varphi \sin^{4}\theta + 2\cos^{4}\varphi \sin\varphi + \sin^{3}\varphi \cos\varphi] \ d\varphi \ d\theta$$

$$\int_0^{2\pi} \sin\theta \ d\theta = 0 \qquad \int_0^{2\pi} \cos\theta \ d\theta = 0 \qquad \int_0^{2\pi} \sin^2\theta \cos\theta \ d\theta = 0 \qquad \int_0^{2\pi} \cos^2\theta \sin\theta \ d\theta = 0$$

Further, after much world

$$\int_{0}^{\pi/2} \sin^{5}\varphi \ d\varphi = \frac{8}{15} \qquad \int_{0}^{2\pi} \cos^{4}\theta \ d\theta = \int_{0}^{2\pi} \sin^{4}\theta \ d\theta = \frac{3}{4}\pi$$

$$\int_{0}^{\pi/2} \cos^{4}\varphi \sin\varphi \ d\varphi = \frac{1}{5} \qquad \int_{0}^{\pi/2} \sin^{3}\varphi \cos\varphi \ d\varphi = \frac{1}{4} \qquad \text{and} \qquad \int_{0}^{2\pi} 1 \ d\theta = 2\pi$$

So
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \vec{F} \cdot \vec{N} \ d\varphi \ d\theta = 16 \left[2 \left(\frac{8}{15} \right) \left(\frac{3}{4} \pi \right) + 2 \left(\frac{8}{15} \right) \left(\frac{3}{4} \pi \right) + 2 \left(\frac{1}{5} \right) (2\pi) + \frac{1}{4} (2\pi) \right] = \frac{232}{5} \pi$$

Method II: Parametrize *D*:

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 0) \qquad 0 \le r \le 2 \qquad 0 \le \theta \le 2\pi$$

$$\vec{R}_r = \left(\cos\theta, \sin\theta, 0\right)$$

$$\vec{R}_\theta = (-r\sin\theta, r\cos\theta, 0)$$

$$\vec{N} = \left(0, 0, r\right) \quad \text{This is up but we need down; so we reverse it to get } \vec{N} = (0, 0, -r)$$

$$\vec{F} = \left(x^3 + y^2 + z^2, \ y^3 + x^2 + z^2, \ z^3 + x^2 + y^2\right) = \left(r^3\cos^3\theta + r^2\sin^2\theta, r^3\sin^3\theta + r^2\cos^2\theta, r^2\right)$$

$$\vec{F} \cdot \vec{N} = -r^3$$

$$\iint_{D} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{2} \vec{F} \cdot \vec{N} \ dr \ d\theta = \int_{0}^{2\pi} \int_{0}^{2} -r^3 \ dr \ d\theta = -2\pi \left[\frac{r^4}{4}\right]_{0}^{2} = -8\pi$$

Use spherical coordinates for V:

$$\vec{R}(\rho, \varphi, \theta) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \qquad 0 \le \rho \le 2, \qquad 0 \le \varphi \le \frac{\pi}{2} \qquad 0 \le \theta \le 2\pi$$

$$dV = \rho^2 \sin \varphi \ d\rho \ d\varphi \ d\theta$$

$$\vec{\nabla} \cdot \vec{F} = 3x^2 + 3y^2 + 3z^2 = 3\rho^2$$

$$\iiint_V \vec{\nabla} \cdot \vec{F} \ dV = \int_0^{2\pi} \int_0^{\pi/2} \int_0^2 3\rho^2 \ \rho^2 \sin \varphi \ d\rho \ d\varphi \ d\theta = 2\pi \left[-\cos \varphi\right]_{\varphi=0}^{\pi/2} \left[\frac{3\rho^5}{5}\right]_{\rho=0}^2$$

$$= 2\pi \left[1\right] \left[\frac{3 \cdot 32}{5}\right] = \frac{192}{5}\pi$$

We combine these to get

$$\iint\limits_{H} \vec{F} \bullet d\vec{S} = \iiint\limits_{V} \vec{\nabla} \bullet \vec{F} \ dV - \iint\limits_{D} \vec{F} \bullet d\vec{S} = \frac{192}{5} \pi - -8\pi = \frac{232}{5} \pi$$

Notice that Methods I and II give the same answer.

15. (10 points) Find the point (x, y, z) in the first octant on the surface $z = \frac{27}{r} + \frac{64}{v}$ which is closest to the origin.

Minimize the square of the distance to the origin $f = x^2 + y^2 + z^2$ constraint that the point lies on the surface $z = \frac{27}{x} + \frac{64}{y}$. subject to the

Method I: Eliminate a constraint:

Minimize
$$f = x^2 + y^2 + \left(\frac{27}{x} + \frac{64}{y}\right)^2$$

 $\vec{\nabla} f = \left(2x + 2\left(\frac{27}{x} + \frac{64}{y}\right)\left(\frac{-27}{x^2}\right), 2y + 2\left(\frac{27}{x} + \frac{64}{y}\right)\left(\frac{-64}{y^2}\right)\right) = (0,0)$

Multiply the first equation by $\frac{x^2}{54}$ and the second equation by $\frac{y^2}{128}$:

(1.)
$$\frac{x^3}{27} = \left(\frac{27}{x} + \frac{64}{y}\right)$$
 (2.) $\frac{y^3}{64} = \left(\frac{27}{x} + \frac{64}{y}\right)$

Equate these to obtain $\frac{x}{3} = \frac{y}{4}$ and plug back into (1.) to obtain:

$$\frac{x^3}{27} = \left(\frac{27}{x} + \frac{16 \cdot 3}{x}\right) = \frac{75}{x}$$

Cross multiply:
$$x^4 = 75 \cdot 27 = 3^4 \cdot 5^2$$
 So $x = 3\sqrt{5}$ and $y = 4\sqrt{5}$ and $z = \frac{27}{x} + \frac{64}{y} = \frac{27}{3\sqrt{5}} + \frac{64}{4\sqrt{5}} = \frac{25}{\sqrt{5}} = 5\sqrt{5}$.

Method II: Lagrange multipliers:

Minimize
$$f = x^2 + y^2 + z^2$$
 subject to $g = z - \frac{27}{x} - \frac{64}{y} = 0$

$$\vec{\nabla} f = (2x, 2y, 2z)$$
 $\vec{\nabla} g = \left(\frac{27}{x^2}, \frac{64}{y^2}, 1\right)$

Lagrange equations:
$$\vec{\nabla} f = \lambda \vec{\nabla} g$$
:
 $2x = \frac{27\lambda}{x^2}$ $2y = \frac{64\lambda}{y^2}$ $2z = \lambda$

Cross multiply in the first two equations and replace the λ by 2z:

$$2x^3 = 54z$$
 $2y^3 = 128z$

Divide by 2 and take the cube root:
$$x = 3\sqrt[3]{z}$$
 $y = 4\sqrt[3]{z}$

Plug into the constraint and solve:
$$z = \frac{27}{3\sqrt[3]{7}} + \frac{64}{4\sqrt[3]{7}} = \frac{25}{\sqrt[3]{7}} \qquad z^{4/3} = 5^2$$

$$z = 5^{3/2} = 5\sqrt{5}$$
 $x = 3\sqrt[3]{z} = 3\sqrt{5}$ $y = 4\sqrt[3]{z} = 4\sqrt{5}$