| Name             | ID         | Section    | 1-5 | /40 | 8  | /20 |
|------------------|------------|------------|-----|-----|----|-----|
| MATH 253 Honors  | Final Exam | Fall 2002  | 6   | /10 | 9  | /10 |
| Sections 201-202 | Solutions  | P. Yasskin | 7   | /10 | 10 | /10 |

Multiple Choice: (8 points each) Work Out: (points indicated)

- **1.** Find the volume of the parallelepiped with edges  $\vec{u} = (1,0,3), \vec{v} = (0,2,-1)$  and  $\vec{w} = (2,0,2).$ 
  - **a.** −8
  - **b.** -4
  - **c.** 4
  - d. 8 correctchoice
  - **e.** 16

$$V = |\vec{u} \cdot \vec{v} \times \vec{w}| = \begin{vmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 2 & 0 & 2 \end{vmatrix} = |-8| = 8$$

- **2.** Duke Skywater is flying the Millenium Eagle through a polaron field. His galactic coordinates are (2300, 4200, 1600) measured in lightseconds and his velocity is  $\vec{v} = (.2, .3, .4)$  measured in lightseconds per second. He measures the strength of the polaron field is p = 274 milliwookies and its gradient is  $\vec{\nabla}p = (3, 2, 2)$  milliwookies per lightsecond. Assuming a linear approximation for the polaron field and that his velocity is constant, how many seconds will Duke need to wait until the polaron field has grown to 286 milliwookies?
  - **a.** 2
  - **b.** 3
  - **c.** 4
  - **d.** 6 correctchoice
  - **e.** 12

The derivative along Duke's path is

$$\frac{dp}{dt} = \vec{v} \cdot \vec{\nabla} p = (.2, .3, .4) \frac{\text{lightseconds}}{\text{second}} \cdot (3, 2, 2) \frac{\text{milliwookies}}{\text{lightsecond}} = .6 + .6 + .8 = 2 \frac{\text{milliwookies}}{\text{second}}$$

So the polaron field increases 2 milliwookies each second.

To increase 12 milliwookies, it will take 6 seconds.

- **3.** Find the plane tangent to the hyperbolic paraboloid x = yz at the point P = (6,3,2). Which of the following points does **not** lie on this plane?
  - **a.** (-6,0,0)
  - **b.** (0,3,0)
  - **c.** (0,0,2)
  - **d.** (-1,1,1)
  - **e.** (1,-1,-1) correctchoice

Let f(y,z) = yz. Then  $f_y = z$  and  $f_z = y$ .

At the point (y,z) = (3,2), we have f(3,2) = 6,  $f_y(3,2) = 2$  and  $f_z(3,2) = 3$ .

So the plane tangent to x = f(y,z) at (y,z) = (3,2) is

$$x = f_{tan}(y,z) = f(3,2) + f_v(3,2)(y-3) + f_z(3,2)(z-2) = 6 + 2(y-3) + 3(z-2)$$
 or  $x = 2y + 3z - 6$ 

Plugging in each point, we find (1,-1,-1) is not a solution.

- **4.** A airplane is circling with constant speed above Kyle Field along the curve  $\vec{r}(t) = (\cos(8\pi t), \sin(8\pi t), 2)$  where distances are in miles and time is in hours. Find the tangential acceleration  $a_T$ , where the acceleration is  $\vec{a} = a_T \hat{T} + a_N \hat{N}$ .
  - **a.** 0 correctchoice
  - **b.**  $8\pi$
  - c.  $-8\pi$
  - **d.**  $64\pi^2$
  - **e.**  $-64\pi^2$

$$\vec{v} = (-8\pi \sin(8\pi t), 8\pi \cos(8\pi t), 0)$$
  $\vec{a} = (-64\pi^2 \cos(8\pi t), -64\pi^2 \sin(8\pi t), 0)$ 

$$|\vec{v}| = \sqrt{64\pi^2} = 8\pi$$
  $\hat{T} = (-\sin(8\pi t), \cos(8\pi t), 0)$   $a_T = \frac{d|\vec{v}|}{dt} = 0$ 

OR 
$$a_T = \vec{a} \cdot \hat{T} = 64\pi^2 \cos(8\pi t) \sin(8\pi t) - 64\pi^2 \cos(8\pi t) \sin(8\pi t) = 0$$

- **5.** Find the volume below the plane z = 6 2y above the triangle with vertices (0,0,0), (1,0,0) and (0,3,0).
  - **a.** 3
  - **b.** 6 correctchoice
  - **c.** 9
  - **d.** 12
  - **e.** 15

$$V = \int_0^1 \int_0^{3-3x} (6-2y) \, dy \, dx = \int_0^1 [6y - y^2]_0^{3-3x} \, dx = \int_0^1 [6(3-3x) - (3-3x)^2] \, dx = \int_0^1 (9-9x^2) \, dx$$
$$= [9x - 3x^3]_0^1 = 9 - 3 = 6$$

**6.** (10 points) Find the location and value of the minimum of the function  $f(x,y,z) = x^2 + 2y^2 + 3z^2$  on the plane x + y + z = 11.

METHOD 1: Lagrange Multipliers:

$$f = x^2 + 2y^2 + 3z^2 \qquad \overrightarrow{\nabla} f = (2x, 4y, 6z) \qquad g = x + y + z \qquad \overrightarrow{\nabla} g = (1, 1, 1)$$

$$\overrightarrow{\nabla} f = \lambda \overrightarrow{\nabla} g \qquad \Rightarrow \qquad 2x = \lambda, \quad 4y = \lambda, \quad 6z = \lambda \qquad \Rightarrow \qquad x = \frac{\lambda}{2}, \quad y = \frac{\lambda}{4}, \quad z = \frac{\lambda}{6}$$

$$x + y + z = \frac{\lambda}{2} + \frac{\lambda}{4} + \frac{\lambda}{6} = 11 \qquad \Rightarrow \quad 6\lambda + 3\lambda + 2\lambda = 11 \cdot 12 \qquad \Rightarrow \quad \lambda = 12$$

$$x = 6, \quad y = 3, \quad z = 2 \qquad f(6, 3, 2) = 36 + 2 \cdot 9 + 3 \cdot 4 = 66$$

METHOD 2: Eliminate a Variable:

$$z = 11 - x - y$$
  $\Rightarrow$   $f = x^2 + 2y^2 + 3(11 - x - y)^2$   
 $f_x = 2x - 6(11 - x - y) = 8x + 6y - 66 = 0$   $f_y = 4y - 6(11 - x - y) = 6x + 10y - 66 = 0$   
Cross multiply:  $80x + 60y = 660$   $36x + 60y = 396$   $\Rightarrow$   $44x = 264$   $\Rightarrow$   $x = 6$   
Substitute back into  $f_y$ :  $36 + 10y - 66 = 0$   $\Rightarrow$   $y = 3$   
Substitute back:  $z = 11 - 6 - 3 = 2$   $f(6,3,2) = 36 + 2 \cdot 9 + 3 \cdot 4 = 66$ 

7. (10 points) Consider the region between the curves y = 2|x| - 2 and y = |x|.

If the density is  $\delta = 2 + 2y$  compute the mass and y-component of the center of mass of this region. (7 points for setup. 3 points for evaluation.)



Find positive intersection:  $2x - 2 = x \implies x = 2$ 

Use symmetry to double the integral for positive x.

$$M = 2 \int_{0}^{2} \int_{2x-2}^{x} (2+2y) \, dy \, dx = 2 \int_{0}^{2} [2y+y^{2}]_{2x-2}^{x} \, dx = 2 \int_{0}^{2} [2x+x^{2}] - \left[2(2x-2)+(2x-2)^{2}\right] dx$$

$$= 2 \int_{0}^{2} (6x-3x^{2}) \, dx = 2[3x^{2}-x^{3}]_{0}^{2} = 2(12-8) = 8$$

$$y-\text{mom} = 2 \int_{0}^{2} \int_{2x-2}^{x} y(2+2y) \, dy \, dx = 2 \int_{0}^{2} \left[y^{2} + \frac{2y^{3}}{3}\right]_{2x-2}^{x} dx$$

$$\int_{0}^{2} \left[x^{2} + \frac{2y^{3}}{3}\right]_{2x-2}^{x} dx$$

$$= 2 \int_0^2 \left[ x^2 + \frac{2x^3}{3} \right] - \left[ (2x - 2)^2 + \frac{2(2x - 2)^3}{3} \right] dx$$

$$= 2 \int_0^2 \left( \frac{4}{3} - 8x + 13x^2 - \frac{14}{3}x^3 \right) dx = 2 \left[ \frac{4}{3}x - 4x^2 + 13\frac{x^3}{3} - \frac{14}{3}\frac{x^4}{4} \right]_0^2$$

$$= 2 \left( \frac{8}{3} - 16 + \frac{104}{3} - \frac{56}{3} \right) = \frac{16}{3} (1 - 6 + 13 - 7) = \frac{16}{3}$$

$$\bar{y} = \frac{y\text{-mom}}{M} = \frac{16}{3 \cdot 8} = \frac{2}{3}$$

**8.** (20 points) **Stokes' Theorem** states that if S is a nice surface in  $\mathbb{R}^3$  and  $\partial S$  is its boundary curve traversed counterclockwise as seen from the tip of the normal to S and  $\vec{F}$  is a nice vector field on S then

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{S}$$

Verify Stokes' Theorem if

$$F = (y, -x, x^2 + y^2)$$

and S is the paraboloid  $z = x^2 + y^2$  for  $z \le 4$ 

with normal pointing up and in.

Remember to check the orientations.

The paraboloid may be parametrized by:

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$$

**a.** (10) Compute  $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$  using the following steps:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ y & -x & x^2 + y^2 \end{vmatrix} = i(2y - 0) - j(2x - 0) + k(-1 - 1) = (2y, -2x, -2)$$

$$(\vec{\nabla} \times \vec{F})(\vec{R}(r,\theta)) = (2r\sin\theta, -2r\cos\theta, -2)$$

$$\vec{R}_r = (\cos\theta, \sin\theta, 2r)$$

$$\vec{R}_{\theta} = (-r\sin\theta, r\cos\theta, 0)$$

$$\vec{N} = i(-2r^2\cos\theta) - j(2r^2\sin\theta) + k(r\cos^2\theta + r\sin^2\theta) = (-2r^2\cos\theta, -2r^2\sin\theta, r)$$

This is oriented correctly as up and in.

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{N} dr d\theta = \iint_{S} (-4r^{3} \sin \theta \cos \theta + 4r^{3} \sin \theta \cos \theta - 2r) dr d\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{2} (-2r) dr d\theta = 2\pi \left[ -r^{2} \right]_{0}^{2} = -8\pi$$

**b.** (10) Recall  $F = (y, -x, x^2 + y^2)$  and S is the paraboloid  $z = x^2 + y^2$  for  $z \le 4$  with **normal pointing up and in**. Compute  $\oint_{\partial S} \vec{F} \cdot d\vec{s}$  using the following steps:

$$\vec{r}(\theta) = (2\cos\theta, 2\sin\theta, 4)$$

$$\vec{v}(\theta) = (-2\sin\theta, 2\cos\theta, 0)$$
 which is correctly counterclockwise.

$$\vec{F}(\vec{r}(\theta)) = (2\sin\theta, -2\cos\theta, 4)$$

$$\oint_{\partial S} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_{0}^{2\pi} (-4\sin^{2}\theta - 4\cos^{2}\theta) d\theta = \int_{0}^{2\pi} (-4) d\theta = -8\pi$$

- **9.** (10 points) The paraboloid at the right is the graph of the equation  $z = x^2 + y^2$ .
  - It may be parametrized as 
    →

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2).$$

Find the area of the paraboloid for  $z \le 4$ .

HINT: Use results from #8.



$$\vec{N} = i(-2r^2\cos\theta) - j(2r^2\sin\theta) + k(r\cos^2\theta + r\sin^2\theta) = (-2r^2\cos\theta, -2r^2\sin\theta, r)$$

$$|\vec{N}| = \sqrt{4r^4\cos^2\theta + 4r^4\sin^2\theta + r^2} = \sqrt{4r^4 + r^2} = r\sqrt{4r^2 + 1}$$

$$A = \iiint |\vec{N}| dr d\theta = \int_0^{2\pi} \int_0^2 r \sqrt{4r^2 + 1} dr d\theta = 2\pi \left[ \frac{2(4r^2 + 1)^{3/2}}{3 \cdot 8} \right]_0^2 = \frac{\pi}{6} (17^{3/2} - 1)$$

**10.** (10 points) A paraboloid in  $\mathbf{R}^4$  with coordinates (w,x,y,z), may be parametrized by  $(w,x,y,z)=\vec{R}(r,\theta)=(r\cos\theta,r\sin\theta,r^2,r^2)$  for  $0\leq r\leq 3$  and  $0\leq \theta\leq 2\pi$ . Compute  $I=\int\int (xz\,dw\,dy-wy\,dx\,dz)$  over the surface.

$$w = r\cos\theta, \quad x = r\sin\theta, \quad y = r^2, \quad z = r^2$$

$$\frac{\partial(w,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ 2r & 0 \end{vmatrix} = 2r^2\sin\theta \quad \frac{\partial(x,z)}{\partial(r,\theta)} = \begin{vmatrix} \sin\theta & r\cos\theta \\ 2r & 0 \end{vmatrix} = -2r^2\cos\theta$$

$$I = \int_0^{2\pi} \int_0^3 (r^3\sin\theta(2r^2\sin\theta) - r^3\cos\theta(-2r^2\cos\theta)) dr d\theta = \int_0^{2\pi} \int_0^3 2r^5 dr d\theta = 2\pi \left[\frac{r^6}{3}\right]_0^3 = 486\pi$$

