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MATH 253 Final Exam Fall 2006

Sections 201,202 Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)
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12 /15

13 /15

14 /15

Total /110

1. For the curve r⃗(t) = (tcos t, t sin t), which of the following is false?

a. The velocity is v⃗ = (cos t − t sin t, sin t + tcos t)

b. The speed is |v⃗| = 1 + t2

c. The acceleration is a⃗ = (−2 sin t − tcos t, 2 cos t − t sin t)

d. The arclength between t = 0 and t = 1 is L = ∫0

1
t 1 + t2 dt Correct Choice

e. The tangential acceleration is aT = t
1 + t2

v⃗ = (cos t − t sin t, sin t + tcos t)

|v⃗| = (cos t − t sin t)2 + (sin t + tcos t)2 = cos2t + t2 cos2t + sin2t + t2 sin2t = 1 + t2

a⃗ = (−2 sin t − tcos t, 2 cos t − t sin t)

L = ∫0

1
|v⃗| dt = ∫0

1
1 + t2 dt

aT = d|v⃗|
dt

= 2t
2 1 + t2

or

aT = a⃗ ⋅ T̂ = (−2 sin t − tcos t, 2 cos t − t sin t) ⋅ 1
1 + t2

(cos t − t sin t, sin t + tcos t)

= 1
1 + t2

[(−2 sin t − tcos t)(cos t − t sin t) + (2 cos t − t sin t)(sin t + tcos t)] = t
1 + t2

2. Find the line perpendicular to the surface x2z2 + y4 = 5 at the point (2, 1, 1).

a. (x,y,z) = (1 + t, 1 + t, 2 + 2t)
b. (x,y,z) = (1 + 2t, 1 + t, 2 + t)
c. (x,y,z) = (2 + t, 1 + t, 1 + 2t) Correct Choice

d. (x,y,z) = (1 + 2t, 1 + t, 2 + 2t)
e. (x,y,z) = (2 + 2t, 1 + t, 1 + 1t)

f = x2z2 + y4 P = (2, 1, 1) ∇⃗f = (2xz2, 4y3, 2x2z) ∇⃗f
P

= (4, 4, 8) v⃗ = (1, 1, 2)

X = P + tv⃗ (x,y,z) = (2, 1, 1) + t(1, 1, 2) = (2 + t, 1 + t, 1 + 2t)
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3. Let L = lim
(x,y)→(0,0)

e x2+y2 − 1
x2 + y2

a. L exists and L = 1 by looking at the paths y = mx.

b. L does not exist by looking at the paths y = x and y = −x.

c. L does not exist by looking at polar coordinates.

d. L exists and L = 0 by looking at polar coordinates.

e. L exists and L = 1 by looking at polar coordinates. Correct Choice

Along y = mx, we have L = lim
x→0

e 1+m2 x2 − 1
(1 + m2 )x2

l’H= lim
x→0

e 1+m2 x2 (1 + m2 )2x

(1 + m2 )2x
= 1,

for all m including 1 and − 1 which proves nothing.

In polar coordinates, L = lim
r→0

er 2 − 1
r 2

l’H= lim
r→0

er 2
2r

2r
= 1, which proves the limit exists and = 1.

4. The point (1, −3) is a critical point of the function f = xy2 − 3x3 + 6y. It is a

a. local minimum.

b. local maximum.

c. saddle point. Correct Choice

d. inflection point.

e. The Second Derivative Test fails.

fx = y2 − 9x2 fy = 2xy + 6 fxx = −18x fyy = 2x fxy = 2y

fxx(1, −3) = −18 fyy(1, −3) = 2 fxy(1, −3) = −6 D = fxxfyy − fxy
2 = −36 − 36 = −72

saddle point

5. Compute the line integral ∫ F⃗ ⋅ ds⃗ for the vector field F⃗ = (y,x + 2y) along the curve

r⃗(t) = esin t2
,ecos t2

for 0 ≤ t ≤ π . (HINT: Find a scalar potential.)

a. e2 + e − 1
e − 1

e2

b. 1
e2

+ 1
e − e − e2 Correct Choice

c. e2 − e + 1
e − 1

e2

d. 1
e2

− 1
e + e − e2

e. 0

F⃗ = ∇⃗f for f = xy + y2 A = r⃗(0) = (esin 0,ecos 0 ) = (1,e) B = r⃗( π ) = (esinπ,ecosπ ) = (1,e−1 )

By the F.T.C.C.

∫A

B
F⃗ ⋅ ds⃗ = ∫A

B
∇⃗f ⋅ ds⃗ = f(B) − f(A) = f(1,e−1 ) − f(1,e) = (e−1 + e−2 ) − (e + e2 ) = 1

e2
+ 1

e − e − e2
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6. Compute the line integral ∫ ydx− xdy along the curve y = x2 from (−3, 9) to (0, 0).

HINT: The curve may be parametrized as r(t) = (t, t2 ).

a. −9 Correct Choice

b. −3

c. 1

d. 3

e. 9

r(t) = (t, t2 ) v⃗ = (1, 2t) Orientation OK.

F⃗ = (y, −x) = (t2, −t) F⃗ ⋅ v⃗ = t2 − 2t2 = −t2

∫ ydx− xdy = ∫ F⃗ ⋅ ds⃗ = ∫ F⃗ ⋅ v⃗dt = ∫−3

0
−t2 dθ = − t3

3 −3

0
= 0 − − −27

3
= −9

7. Consider the quarter cylinder surface x2 + y2 = 4 with x ≥ 0, y ≥ 0 and 0 ≤ z ≤ 8.

Find the total mass of the quarter cylinder surface if the density is ρ = x.

The surface may be parametrized by R⃗(θ,h) = (2 cosθ, 2 sinθ,h).

a. 32 Correct Choice

b. 32π

c. 8

d. 8π

e. 64π

e⃗θ = (−2 sinθ, 2 cosθ, 0 ) N⃗ = (2 cosθ, 2 sinθ, 0)

e⃗h = ( 0 , 0 , 1 ) N⃗ = 4 cos2θ + 4 sin2θ = 2

M = ∫∫ρdS = ∫0

8

∫0

π/2
x N⃗ dθdh = ∫0

8

∫0

π/2
2 cosθ2dθdh = 4(8) sinθ

0

π/2 = 32

8. Consider the quarter cylinder surface x2 + y2 = 4 with x ≥ 0, y ≥ 0 and 0 ≤ z ≤ 8.

Find the y-component of the center of mass of the quarter cylinder if the density is ρ = x.

a. 4
π

b. π
4

c. 32

d. 2

e. 1 Correct Choice

y-mom = ∫∫yρdS = ∫0

8

∫0

π/2
yx N⃗ dθdh = ∫0

8

∫0

π/2
4 sinθcosθ2dθdh = 8(8) sin2θ

2 0

π/2
= 32

ȳ = y-mom
M

= 32
32

= 1
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9. Compute the line integral ∮ x2ydx− xy2 dy counterclockwise around the circle x2 + y2 = 16.

(HINT: Use a theorem.)

a. −128π Correct Choice

b. −64π

c. 0

d. 64π

e. 128π

Use Green’s Theorem:

∮
∂R

Pdx+ Qdy = ∫∫
R

∂Q
∂x

− ∂P
∂y

dxdy with P = x2y and Q = −xy2.

∂Q
∂x

− ∂P
∂y

= −y2 − x2 = −r 2 dxdy = rdrdθ

∫∫
R

∂Q
∂x

− ∂P
∂y

dxdy = − ∫0

2π

∫0

4
r 2rdrdθ = −2π r 4

4 r=0

4
= −128π

10. Consider the parabolic surface P given by

z = x2 + y2 for z ≤ 4 with normal pointing up and in,

the disk D given by x2 + y2 ≤ 4 and z = 4 with

normal pointing up, and the volume V between them.

Given that for a certain vector field F⃗ we have

∫∫∫
V

∇⃗ ⋅ F⃗ dV = 13 and ∫∫
D

F⃗ ⋅ dS⃗ = 4

compute ∫∫
P

F⃗ ⋅ dS⃗.

a. −17

b. −9 Correct Choice

c. 5

d. 9

e. 17

By Gauss’ Theorem: ∫∫∫
V

∇⃗ ⋅ F⃗ dV = ∫∫
D

F⃗ ⋅ dS⃗− ∫∫
P

F⃗ ⋅ dS⃗

The minus sign reverses the orientation of P to point outward. Thus

∫∫
P

F⃗ ⋅ dS⃗ = ∫∫
D

F⃗ ⋅ dS⃗− ∫∫∫
V

∇⃗ ⋅ FdV = 4 − 13 = −9
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Work Out: (15 points each. Part credit possible.)

11. Find the point in the first octant on the graph of xy2z4 = 32 which is closest to the origin.

You do not need to show it is a maximum. You MUST use the Method of Lagrange Multipliers.

Half credit for the Method of Elminating the Constraint.

Minimize f = x2 + y2 + z2 subject to g = xy2z4 = 32.

Method 1: Lagrange Multipliers:

∇⃗f = (2x, 2y, 2z) ∇⃗g = (y2z4, 2xyz4, 4xy2z3 )

∇⃗f = λ∇⃗g  2x = λy2z4, 2y = λ2xyz4, 2z = λ4xy2z3

x, y and z cannot be 0 to satisfy the constraint.
λ = 2x

y2z4
= 1

xz4
= 1

2xy2z2
 2x2 = y2, 4x2 = z2  y = 2 x, z = 2x

32 = xy2z4 = x 2 x
2(2x)4 = 32x7  x = 1 y = 2 z = 2

Method 2: Eliminate the Constraint:

x = 32
y2z4

f = 210

y4z8
+ y2 + z2

fy = − 212

y5z8
+ 2y = 0 fz = − 213

y4z9
+ 2z = 0  y6z8 = 211 y4z10 = 212

 2 = y4z10

y6z8
= z2

y2
 z = 2 y  y6 2 y

8 = 211  y14 = 27

 y = 2 z = 2 x = 32
y2z4

= 25

2 ⋅ 24
= 1
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12. The hemisphere H given by

x2 + y2 + (z − 2)2 = 9 for z ≥ 2

has center (0, 0, 2) and radius 3. Verify Stokes’ Theorem

∫∫
H

∇⃗ × F⃗ ⋅ dS⃗ = ∮
∂H

F⃗ ⋅ ds⃗

for this hemisphere H with normal pointing up and out

and the vector field F⃗ = (yz, −xz,z).

Be sure to check and explain the orientations. Use the following steps:

a. The hemisphere may be parametrized by
R⃗(θ,ϕ) = (3 sinϕcosθ, 3 sinϕ sinθ, 2 + 3 cosϕ)

Compute the surface integral by successively finding:

e⃗θ, e⃗ϕ, N⃗, ∇⃗ × F⃗, ∇⃗ × F⃗ R⃗(θ,ϕ) , ∫∫
H

∇⃗ × F⃗ ⋅ dS⃗

î ̂ k̂

e⃗θ = (−3 sinϕ sinθ, 3 sinϕcosθ, 0 )
e⃗ϕ = (3 cosϕcosθ, 3 cosϕ sinθ, −3 sinϕ)

N⃗ = e⃗θ × e⃗ϕ = î(−9 sin2ϕcosθ) − ̂(9 sin2ϕ sinθ) + k̂(−9 sinϕcosϕ sin2θ − 9 sinϕcosϕcos2θ)
= (−9 sin2ϕcosθ, −9 sin2ϕ sinθ, −9 sinϕcosϕ)

N⃗ points down and in. Reverse it: N⃗ = (9 sin2ϕcosθ, 9 sin2ϕ sinθ, 9 sinϕcosϕ)

∇⃗ × F⃗ =

î ̂ k̂
∂
∂x

∂
∂y

∂
∂z

yz, −xz, z

= î(0 − −x) − ̂(0 − y) + k̂(−z − z) = (x,y, −2z)

∇⃗ × F⃗ R⃗(r,θ) = (3 sinϕcosθ, 3 sinϕ sinθ, −2(2 + 3 cosϕ))

∇⃗ × F⃗ ⋅ N⃗ = 27 sin3ϕcos2θ + 27 sin3ϕ sin2θ − 18 sinϕcosϕ(2 + 3 cosϕ)
= 27 sin3ϕ − 36 sinϕcosϕ − 54 sinϕcos2ϕ

∫∫
H

∇⃗ × F⃗ ⋅ dS⃗ = ∫∫
H

∇⃗ × F⃗ ⋅ N⃗dθdϕ = ∫0

π/2
∫0

2π
(27 sin3ϕ − 36 sinϕcosϕ − 54 sinϕcos2ϕ)dθdϕ

= 2π ∫0

π/2
(27(1 − cos2ϕ) sinϕ − 36 sinϕcosϕ − 54 sinϕcos2ϕ)dϕ Let u = cosϕ.

= 2π −27 cosϕ − cos3ϕ
3

+ 18 cos2ϕ + 18 cos3ϕ
0

π/2
= −2π −27 1 − 1

3
+ 18 + 18

= −36π

Problem Continued
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b. Parametrize the boundary circle ∂H and compute the line integral by successively
finding:

r⃗(θ), v⃗(θ), F⃗(r⃗(θ)), ∮
∂H

F⃗ ⋅ ds⃗. Recall: F⃗ = (yz, −xz,z)

r⃗(θ) = (3 cosθ, 3 sinθ, 2)

v⃗(θ) = (−3 sinθ, 3 cosθ, 0)

By the right hand rule the upper curve must be traversed counterclockwise which v⃗
does.

F⃗(r⃗(θ)) = (6 sinθ, −6 cosθ, 2)

∮
∂C

F⃗ ⋅ ds⃗ = ∫0

2π
F⃗ ⋅ v⃗dθ = ∫0

2π
−18 sin2θ − 18 cos2θdθ = ∫0

2π
−18dθ = −36π

They agree!

13. Compute ∫∫ 1
x2

dxdy over the

diamond shaped region bounded by the curves

y = x , y = 3 x , y = x and y = 3x.

HINT: Let u = y2

x and v = y
x .

0 2 4 6 8 10
0

2

4

6

8

10

x

y

We solve for x and y so we can compute the Jacobian:

u
v = y2

x
x
y = y x = y

v = u
v2

So x = u
v2

y = u
v

J =
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

=
1
v2

−2u
v3

1
v

−u
v2

= −u
v4

− −2u
v4

= u
v4

The boundaries are: y2 = x or u = 1. y2 = 9x or u = 9.
y = x or v = 1. y = 3x or v = 3.

The integrand is: 1
x2

= v4

u2
So

∫∫ 1
x2

dxdy = ∫1

3

∫1

9 v4

u2
⋅ u

v4
dudv = ∫1

3
dv∫1

9 1
u du = v

1

3
ln|u|

1

9
= [3 − 1][ln 9 − ln 1] = 2 ln 9
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14. The surface of a football may be approximated

in cylindrical coordinates by

r = sinz for 0 ≤ z ≤ π

Verify Gauss’ Theorem ∫∫∫
V

∇⃗ ⋅ F⃗ dV = ∫∫
∂V

F⃗ ⋅ dS⃗

for the volume inside the football and the vector field

F⃗ = (2x, 2y,x2 + y2 )

Use the following steps:

a. Compute the volume integral by computing ∇⃗ ⋅ F⃗ in rectangular coordinates

and then ∫∫∫
V

∇⃗ ⋅ F⃗ dV in cylindrical coordinates.

∇⃗ ⋅ F⃗ = 2 + 2 + 0 = 4

∫∫∫ ∇⃗ ⋅ F⃗ dV = ∫0

2π

∫0

π

∫0

sinz
4rdrdzdθ = 2π ∫0

π
2r 2

r=0

sinz
dz = 2π ∫0

π
2 sin2zdz

= 2π ∫0

π
1 − cos2zdz= 2π z − sin 2z

2 0

π
= 2π2

b. The surface of the football may be parametrized by R⃗(θ,h) = (sinhcosθ, sinhsinθ,h).

Compute the surface integral by successively finding
e⃗θ, e⃗h, N⃗, F⃗ R⃗(θ,h) , F⃗ ⋅ N⃗, and ∫∫ F⃗ ⋅ dS⃗.

e⃗θ = (− sinhsinθ, sinhcosθ, 0)
e⃗h = (coshcosθ, coshsinθ, 1)

N⃗ = e⃗θ × e⃗h = î(sinhcosθ) − ̂(− sinhsinθ) + k̂(− sinhcoshsin2θ − sinhcoshcos2θ)

= (sinhcosθ, sinhsinθ, − sinhcosh)

F⃗ R⃗(θ,h) = (2 sin hcosθ, 2 sin hsinθ, sin2h)

F⃗ ⋅ N⃗ = 2 sin2hcos2θ + 2 sin2hsin2θ − sin3hcos h = 2 sin2h − sin3hcos h

∫∫ F⃗ ⋅ dS⃗ = ∫0

2π

∫0

π
F⃗ ⋅ N⃗dhdθ = ∫0

2π

∫0

π
(2 sin2h − sin3hcos h)dhdθ

= 2π ∫0

π
(1 − cos2h − sin3hcos h)dh = 2π h − sin 2h

2
− sin4h

4 0

π
= 2π2

8


