Name	ID	
MATH 253H	Final Exam	Fall 2012
Sections 201-202		P. Yasskin

1-9	/45
10	/15
11	/25
12	/15
Total	/100

Multiple Choice: (5 points each. No part credit.)

- 1. Points A, B, C and D are the vertices of a parallelogram traversed in order. If $A=(2,4,1),\ B=(3,-2,0)$ and D=(1,3,-2), then C=
 - **a**. (2,-3,-3)
 - **b**. (4,-1,3)
 - **c**. (0,9,-1)
 - **d**. (6,5,-1)
 - **e**. $\left(4, \frac{9}{2}, 0\right)$

- **2.** Which vector is perpendicular to the surface $x^2z^3 + y^3z^2 = 1$ at the point (3,-2,1)?
 - **a**. (12, -24, 43)
 - **b**. (6,-12,43)
 - **c**. (6, 12, 43)
 - **d**. (6,-12,11)
 - **e**. (-12, -24, -22)

- 3. Find the point on the elliptic paraboloid $\vec{R}(t,\theta) = (3t\cos\theta, 2t\sin\theta, 1 + t^2)$ where a unit normal is $\hat{N} = \left(\frac{-2\sqrt{3}}{5}, \frac{-2}{5}, \frac{3}{5}\right)$.
 - **a**. $\left(\frac{3}{2}, \sqrt{3}, 2\right)$
 - **b**. $\left(-\frac{3}{2}\sqrt{3}, -1, 2\right)$
 - **c**. $(3,2\sqrt{3},5)$
 - **d**. $(3\sqrt{3},2,5)$
 - **e**. $(-3, -2\sqrt{3}, 5)$

4. Compute $\int_0^3 \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} \frac{1}{1+x^2+y^2} dx dy$

HINT: Plot the region of integration and convert to polar coordinates.

- **a**. $\frac{\pi}{2} \ln 10$
- **b**. $\pi \ln 10$
- **c**. $\frac{\pi}{2}$ arctan 3
- **d**. π arctan 3
- **e**. π arctan 10

- 5. Find the mass of a wire in the shape of the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$ for $-1 \le t \le 1$ if the density is $\rho = x$.
 - **a**. $\frac{e^2}{2} + \frac{e^{-2}}{2}$
 - **b**. $\frac{e^2}{2} \frac{e^{-2}}{2}$
 - **c**. $\frac{e^2}{2} \frac{e^{-2}}{2} + 2$
 - **d**. $e^2 e^{-2}$
 - **e**. $e^2 e^{-2} + 2$

- **6.** Find the plane tangent to graph of $z = x \cos y + \sin y$ at $(2, \pi)$. What is the *z*-intercept?
 - **a**. $-4 + \pi$
 - **b**. $4 + \pi$
 - **c**. -4π
 - **d**. 4π
 - \mathbf{e} . π

- 7. Let $L = \lim_{(x,y)\to(0,0)} \frac{e^{(x^2+y^2)}-1}{x^2+y^2}$
 - **a.** L does not exist by looking at the paths y = x and y = -x.
 - **b**. L exists and L = 1 by looking at the paths y = mx.
 - ${f c}.$ L does not exist by looking at polar coordinates.
 - **d**. L exists and L = 1 by looking at polar coordinates.
 - **e**. L exists and L=0 by looking at polar coordinates.

- **8.** Compute $\oint \vec{F} \cdot d\vec{s}$ for $\vec{F} = (y^2, 4xy)$ along the piece of the parabola $y = x^2$ from (-2,4) to (2,4) followed by the line segment from (2,4) back to (-2,4). HINT: Use Green's Theorem.
 - **a**. $\frac{256}{5}$
 - **b.** $\frac{768}{5}$ **c.** $\frac{64}{3}$

 - **d**. $\frac{128}{3}$
 - **e**. 0

- **9**. Compute $\int \vec{F} \cdot d\vec{s}$ for $\vec{F} = (4xy^2, 4x^2y)$ along the line segment from (1,2) to (3,1). HINT: Find a scalar potential.
 - **a**. 4
 - **b**. 10
 - **c**. 20
 - **d**. 24
 - **e**. 26

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (15 points) A 166 cm piece of wire is cut into 3 pieces of lengths a, b and c.

The piece of length a is folded into a square of side $s = \frac{a}{4}$.

The piece of length b is folded into a rectangle of length $L_1 = \frac{b}{3}$ and width $W_1 = \frac{b}{6}$.

The piece of length c is folded into a rectangle of length $L_2 = \frac{3c}{8}$ and width $W_2 = \frac{c}{8}$.

Find a, b and c so that the total area is a minimum.

What is the total area?

11. (25 points) Verify Gauss' Theorem $\iiint\limits_V \vec{\nabla} \cdot \vec{F} \ dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (xz, yz, x^2 + y^2)$ and the solid hemisphere $0 \le z \le \sqrt{4 - x^2 - y^2}$.

Be careful with orientations. Use the following steps:

First the Left Hand Side:

a. Compute the divergence:

$$\vec{\nabla} \cdot \vec{F} =$$

b. Express the divergence and the volume element in the appropriate coordinate system:

$$\vec{\nabla} \cdot \vec{F} = dV =$$

c. Compute the left hand side:

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \, dV =$$

Second the Right Hand Side:

The boundary surface consists of a hemisphere $\ H$ and a disk $\ D$ with appropriate orientations.

d. Parametrize the disk *D*:

$$\vec{R}(r,\theta) = \left(\underline{},\underline{},\underline{},\underline{}\right)$$

e. Compute the tangent vectors:

$$\vec{e}_r = \left(\begin{array}{c} , \\ \end{array} \right)$$
 $\vec{e}_\theta = \left(\begin{array}{c} , \\ \end{array} \right)$

f. Compute the normal vector:

$$\vec{N} =$$

g. Evaluate $\vec{F} = (xz, yz, x^2 + y^2)$ on the disk:

$$\vec{F}\Big|_{\vec{R}(r,\theta)} =$$

 ${f h}.$ Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

i. Compute the flux through D:

$$\iint\limits_{D} \vec{F} \cdot d\vec{S} =$$

j. Parametrize the hemisphere H:

k. Compute the tangent vectors:

I. Compute the normal vector:

$$\vec{N} =$$

m. Evaluate $\vec{F} = (xz, yz, x^2 + y^2)$ on the hemisphere:

$$\vec{F}\,\Big|_{\vec{R}(\theta,\varphi)}\,=\,$$

n. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

o. Compute the flux through *H*:

$$\iint_{C} \vec{F} \cdot d\vec{S} =$$

p. Compute the TOTAL right hand side:

$$\iint_{\partial V} \vec{F} \cdot d\vec{S} =$$

12. (15 points) Compute $\int \int \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ for $\vec{F} = (-y, x, z)$

over the "clam shell" surface parametrized by

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r\sin(6\theta))$$

for $r \le 2$ oriented upward.

HINTS: Use Stokes Theorem.

What is the value of r on the boundary?

