Name____

MATH 253

Exam 2

Fall 2014

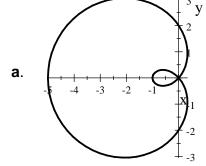
Sections 201,202

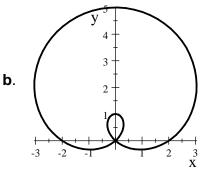
P. Yasskin

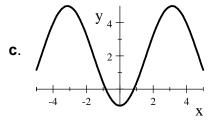
Multiple Choice: (5 points each. No part credit.)

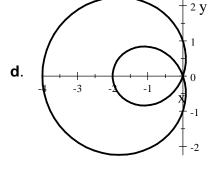
1-8	/40
9	/20
10	/20
11	/20
Total	/100

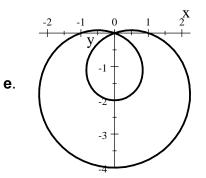
- 1. Compute $\int_0^\pi \int_0^\pi \int_0^\varphi \rho^2 d\rho d\theta d\varphi.$
 - **a**. $\frac{1}{6}\pi^5$
 - **b**. $\frac{1}{12}\pi^5$
 - **c**. $\frac{1}{20}\pi^5$
 - **d**. $\frac{1}{6}\pi^4$
 - **e**. $\frac{1}{12}\pi^4$
- **2**. Which of the following is the polar plot of $r = 2 3\cos(\theta)$?







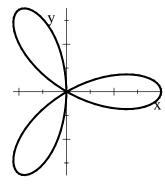




- **3**. A plate fills the region between the graphs of x = |y| and x = 4. Find its mass if its surface density is $\rho = x^2$.
 - **a**. $\frac{256}{3}$
 - **b**. $\frac{128}{3}$
 - **c**. 256
 - **d**. 128
 - **e**. 64
- **4**. A plate fills the region between the graphs of x = |y| and x = 4. Find the *x*-component of its center of mass if its surface density is $\rho = x^2$.
 - **a**. $\frac{16}{5}$
 - **b**. $\frac{32}{5}$
 - **c**. $\frac{512}{5}$
 - **d**. $\frac{2048}{5}$
 - **e**. $\frac{5}{2048}$
- 5. Find the area of one leaf of the rose

$$r = 2\cos 3\theta$$
.

- a. $\frac{\pi}{12}$
- **b**. $\frac{\pi}{6}$
- **c**. $\frac{\pi}{3}$
- **d**. $\frac{2\pi}{3}$
- **e**. $\frac{4\pi}{3}$



- **6.** Set up, but do not compute, the integral $\iiint_{\underline{V}} \vec{\nabla} \cdot \vec{F} dV$ over the solid region between the paraboloid $z = 2x^2 + 2y^2$ and the plane z = 8 where $\vec{F} = (x^3, y^3, z(x^2 + y^2))$.
 - **a.** $\int_0^{\pi} \int_0^2 \int_{2r^2}^8 4r^2 dz dr d\theta$
 - **b.** $\int_{0}^{2\pi} \int_{0}^{2} \int_{2r^{2}}^{8} 4r^{2} dz dr d\theta$
 - **c.** $\int_{0}^{2\pi} \int_{0}^{2} \int_{2r^{2}}^{8} 4r^{3} dz dr d\theta$
 - **d.** $\int_{0}^{2\pi} \int_{0}^{8} \int_{0}^{z/2} 4r^2 dr dz d\theta$
 - **e.** $\int_{0}^{2\pi} \int_{0}^{8} \int_{0}^{z/2} 4r^3 dr dz d\theta$
- 7. Find the average value of f = z on the solid hemisphere $0 \le z \le \sqrt{9 x^2 y^2}$. Note: The average value of a function on a solid is $f_{ave} = \frac{1}{V} \iiint_V f dV$.

 - b. $\frac{\pi}{2}$ c. $\frac{3}{2}$ d. $\frac{1}{2}$ e. $\frac{9}{8}$
- **8**. Compute the line integral $\int \vec{\nabla} \times \vec{F} \cdot d\vec{s}$ counterclockwise around one loop of the helix $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta, 3\theta)$ for the vector field $\vec{F} = (xz, yz, z^2)$. Hint: Compute $\vec{\nabla} \times \vec{F}$ in rectangular coordinates before integrating.
 - **a**. 16π
 - **b**. 32π
 - **c**. 64π
 - **d**. 128π
 - **e**. 0

Work Out: (Points indicated. Part credit possible. Show all work.)

9. (20 points) A rectangular solid box is sitting on the xy-plane with its upper 4 vertices on the ellipsoid $x^2 + 4y^2 + 9z^2 = 108$. Find the dimensions and volume of the largest such box.

Full credit for solving by Lagrange multipliers.

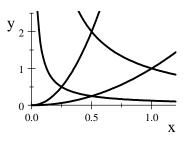
Half credit for solving by Eliminating a Variable.

50% extra credit for solving both ways.

10. (20 points) Compute the integral $\iint y dA$ over the region in the first quadrant bounded by

$$y = x^2$$
, $y = 8x^2$, $y = \frac{1}{x}$, and $y = \frac{1}{8x}$.

Use the following steps:



a. Define the curvilinear coordinates u and v by $y = u^3 x^2$ and $y = \frac{v^3}{x}$. Express the coordinate system as a position vector.

$$\vec{r}(u,v) =$$

b. Find the coordinate tangent vectors:

$$\vec{e}_u =$$

$$\vec{e}_v =$$

c. Compute the Jacobian factor:

$$J = \left| \frac{\partial(x, y)}{\partial(u, v)} \right|$$

d. Compute the integral:

$$\iint y \, dA =$$

11. (20 points) Compute the flux $\iint_H \vec{F} \cdot d\vec{S}$ of the vector field

$$\vec{F} = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, \frac{z}{\sqrt{x^2 + y^2}}\right)$$
 outward through the upper half of the sphere $x^2 + y^2 + z^2 = 9$. Use the following steps:

a. Parametrize the hemisphere:

$$\vec{R}(\theta, \varphi) =$$

b. Find the tangent vectors:

$$\vec{e}_{\theta} =$$

$$\vec{e}_{\sigma} =$$

c. Find the normal vector:

$$\vec{N} =$$

d. Fix the orientation of the normal (if necessary):

$$\vec{N} =$$

e. Evaluate the vector field on the cylinder:

$$\vec{F}(\vec{R}(\theta,\varphi)) =$$

f. Evaluate the dot product:

$$\vec{F} \cdot \vec{N} =$$

g. Calculate the flux:

$$\int\!\int_{H} \vec{F} \cdot d\vec{S} =$$