Name	ID	Sec	1	/20	5
		0 0000	2	/30	6
MATH 308	Exam 2	Summer 2003	3	/10	7
Section 301-302	Version B	P. Yasskin	4	/10	

- 1. (20 points) Consider the homogenous differential equation
 - a. (10) Find the general solution.

b. (8) Find the specific solution satisfying the initial conditions x(0) = 3, x'(0) = 0.

- ${f c.}$ (2) If you regard this equation as describing a free, damped harmonic oscillator, it is
 - Circle one:
- i) underdamped
- ii) critically damped
- iii) overdamped

/10

/10

/10

 $\frac{d^2x}{dt^2} + 7\frac{dx}{dt} + 10x = 0$

2. (30 points) Consider the inhomogenous differential equation $\frac{d^2x}{dt^2} + 7\frac{dx}{dt} + 10x = 442\cos(3t)$

HINT: The related homogenous differential equation was analyzed in problem 1.

a. (10) Find a particular solution.

b. (5) Find the general solution. (Use your result from 1a.)

C.	(10)	Find the s	pecific soluti	on satisfying	the initial	conditions	x(0) = 1	x'(0) = 0.

d. (5) What is the phase shift? What is the gain? HINT: Write the steady state solution as $A\cos(3t - \varphi)$

3. (10 points) Consider the inhomogenous differential equation $\frac{d^2x}{dt^2} + 7\frac{dx}{dt} + 10x = 6e^{-2t}$ Find a particular solution.

HINT: The related homogenous differential equation was analyzed in problem 1.

4. (10 points) Consider the homogenous differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 25x = 0$

a. (8) Find the general solution.

b. (2) If you regard this equation as describing a free, damped harmonic oscillator, it is

Circle one:

- i) underdamped
- ii) critically damped
- iii) overdamped

- **5.** (10 points) Consider the homogenous differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 0$
 - a. (8) Find the general solution.

- **b.** (2) If you regard this equation as describing a free, damped harmonic oscillator, it is
 - Circle one:
- i) underdamped
- ii) critically damped
- iii) overdamped
- **6.** (10 points) Consider the inhomogenous differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 27t^2 18$ Find a particular solution.

HINT: The related homogenous differential equation was analyzed in problem 5.

7.	(10 points) A 3 kg mass is attached to a spring with spring constant of 6 N/m and feels air resistance proportional to the velocity with drag coefficient of 0.4 N-sec/m. The mass also has an electric charge and there is an electric field which applies an external force of $F_e = 5\cos(2t)$. If you hold the mass at .8 m from its rest position and let go at $t = 0$, write the differential equation and initial conditions which determine the motion of the mass.
Sci	ratch or Continuation: