Name		ID		1	/10	5	/10
MATH 308	Exam I		Fall 2000 P. Yasskin	2	/10	6	/15
Section 200				3	/10	7	/20
				4	/10	8	/15

HAND COMPUTATIONS

Problems 1-5: Solve the initial value problem using the method appropriate to one of the following types of first order differential equations:

- a. Separable Equation
- b. Equation with Homogeneous Coefficients
- c. Linear Equation
- **d**. Bernoulli Equation Hint: $k = \frac{1}{1-s}$
- e. Exact Equation

Be sure to identify the equation type. There is one problem for each equation type.

1. (10 points)
$$\frac{dy}{dx} = \frac{4y}{x} + x$$
 with $y(1) = 0$

2. (10 points)
$$\frac{dy}{dt} = -\frac{2y}{t} + 6t\sqrt{y}$$
 with $y(1) = 9$

3. (10 points)
$$\frac{dx}{dt} = \frac{x}{t} + \frac{1}{tx^2}$$
 with $x(1) = 2$

4. (10 points)
$$\frac{dy}{dx} = \frac{y \sin x - \sin y}{x \cos y + \cos x}$$
 with $y(0) = 2$

5. (10 points)
$$\frac{dy}{dx} = \frac{x^2}{y^2} + \frac{y}{x}$$
 with $y(1) = 3$

6. (15 points) Set up the differential equation and initial condition for P(t) in the following problem. Do not solve the equations.

A certain pond can contain 12,000 ft³ of water before the dam overflows. Initially, there are 8,000 ft³ of water and 50 gallons of pollution in the pond. Acme Polluters is putting 2 gallons of pollution in the pond a day. Every day, 2,000 ft³ of fresh water is pumped into the pond and 1,000 ft³ of polluted water is pumped out. Let P(t) be the gallons of pollution in the pond after t days. When does the dam overflow and what is the concentration of the pollution in the water when the dam first overflows?

MAPLE COMPUTATIONS

- 7. (20 points) Consider the differential equation $\frac{dy}{dt} = e^t y$.
 - a. (4 pts) Find the general solution.
 - **b**. (4 pts) Find the specific solution satisfying the initial condition y(0) = 4.
 - **c**. (4 pts) Plot the direction field of the differential equation for times $-4 \le t \le 6$.
 - d. (4 pts) Add to the direction field the solutions satisfying each of the initial conditions

$$y(0) = -4$$
, $y(0) = -2$, $y(0) = 0$, $y(0) = 2$, $y(0) = 4$, $y(0) = 6$

Adjust the vertical range to a reasonable value.

- e. (4 pts) Looking at the exact solution and the plot, describe the behavior of the solutions for large times. At about what time does this asymptotic behavior begin?
- 8. (15 points) Consider the initial value problem $\frac{dy}{dx} = \cos x + \sin y$ with y(0) = 1.
 - a. (10 pts) What happens if you try to solve the equations using **dsolve**? Find a Taylor polynomial approximation about x = 0 for the solution to this initial value problem keeping terms up to and including x^4 .
 - **b**. (5 pts) Plot the direction field for this differential equation together with the solution satisfying the initial condition. Plot the Taylor polynomial approximation. Combine the two plots into a single plot. On approximately what interval is the Taylor polynomial a good approximation?

To Turn in Your Maple Computations:

- 1. Save your Maple file as lastname_exam1.mws
- 2. Print your file as follows:
 - a. Click on FILE, PRINT and Printer Command.
 - b. Make the command read: **Ipr -J "Yasskin Maple Exam 1"**
 - c. Call Dr. Yasskin over to check your printing.
 - d. Click on PRINT.
- 3. Mail your file as follows:
 - a. Start the mail program: pine
 - **b**. Compose a letter by typing **C**.
 - c. In the header region, enter:
 - To **yasskin**

Attachment lastname_exam1.mws (or the *exact* name of your Maple file) Subject Last Name Exam1

- d. Call Dr. Yasskin over to check your email.
- e. Mail the letter by typing ^X and Y.