Consider the vector space

 $F = \operatorname{Span}(1, \sin x, \cos x, \sin 2x, \cos 2x, \sin 3x, \cos 3x, \dots, \sin px, \cos px, \dots)$

where p is an integer, with the usual addition and scalar multiplication of functions and the subspace $F_2 = \text{Span}(1, \sin x, \cos x, \sin 2x, \cos 2x)$. An inner product for F or F_2 is

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx$$

1. Compute each of the following inner products:

$$\langle 1, 1 \rangle = \int_{0}^{2\pi} 1 \, dx$$

$$\langle 1, \sin px \rangle = \int_{0}^{2\pi} \sin px \, dx \qquad \langle 1, \cos px \rangle = \int_{0}^{2\pi} \cos px \, dx$$

$$\langle \sin px, \sin px \rangle = \int_{0}^{2\pi} \sin^{2}px \, dx \qquad \langle \cos px, \cos px \rangle = \int_{0}^{2\pi} \cos^{2}px \, dx$$

$$\langle \sin px, \cos px \rangle = \int_{0}^{2\pi} \sin px \, \cos px \, dx$$

$$\langle \sin px, \sin qx \rangle = \int_{0}^{2\pi} \sin px \, \sin qx \, dx \qquad \langle \cos px, \cos qx \rangle = \int_{0}^{2\pi} \cos px \, \cos px \, dx$$

$$\langle \sin px, \cos qx \rangle = \int_{0}^{2\pi} \sin px \, \cos qx \, dx$$

Assume p and q are positive integers and $p \neq q$.

Be sure to show any identities you use and the antiderivatives.

Do not just use a computer, calculator or table of integrals.

- **2.** Are the vectors $1, \sin x, \cos x, \sin 2x, \cos 2x, \sin 3x, \cos 3x, \dots, \sin px, \cos px, \dots$ orthonormal, orthogonal or neither. Why?
- 3. Consider the functions

$$f = \sin x + 2\sin^2 x$$
 and $g = \cos x + 2\cos^2 x$.

Compute $\langle f, g \rangle$ by directly computing the integral.

- **4.** Find the matrix of the inner product $G_{e \leftrightarrow e}$ on F_2 relative to the basis $e = (1, \sin x, \cos x, \sin 2x, \cos 2x)$. In other words, find the 5×5 matrix $G = (g_{ij})$ whose entries are $g_{ij} = \langle e_i, e_j \rangle$.
- **5.** Find the components of f and g (from #3) relative to the basis $e=(1,\sin x,\cos x,\sin 2x,\cos 2x)$. Recall these are called $(f)_e$ and $(g)_e$. HINT: What are the identities for $\sin^2 x$ and $\cos^2 x$?
- **6.** Recompute $\langle f,g \rangle$ but use the matrix of the inner product and the components of f and g.

HINT:
$$\langle f, g \rangle = (f)_e^T G_{e \leftrightarrow e} (g)_e$$