Name:

Definition: x = x(u, v) and y = y(u, v), then the Jacobian matrix of x and y with respect to u and v is

$$\frac{D(x,y)}{D(u,v)} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

and similarly with more or less variables.

- 1. Duke Skywater is flying the Millenium Eagle through a region of intergalactic space containing a deadly polaron field and a life giving axion field. If the polaron density is P and the axion density is A, then the combined danger strength is $F = 9\frac{P}{A}$. At galactic time t = 47241.3, Duke is located at the point (x,y,z) = (47,23,21) lightyears and has velocity $\vec{v} = (.2,-.1,.3)$ lightyears/year. At that instant, he measures the polaron density is $P = 5 \times 10^{40}$ polarons/millilightyear³ and has gradient $\vec{\nabla}P = (-4 \times 10^{38}, 2 \times 10^{38}, 3 \times 10^{38})$ polarons/millilightyear⁴ and the axion density is $P = 3 \times 10^{30}$ axions/millilightyear³ and has gradient $\vec{\nabla}A = (5 \times 10^{28}, -3 \times 10^{28}, 1 \times 10^{28})$ axions/millilightyear⁴. What is the danger strength P and its time rate of change P at P at P at P and its time rate of change P at P at P at P and its time rate of change P at P at P and P and P at P and P at P at P and P at P at P and P at P and P at P at P and P at P and P at P at P and P at P and P at P and P at P at P at P at P at P and P at P at P and P at P and P at P at P and P at P at P and P and P at P and P at P and P at P and P at P and P and P at P and P and P and P at P and P and P at P and P at P and P at P and P at P and P and P at P and P at P and P at P and P at P and P and P
 - **a**. Find the danger strength F at t = 47241.3
 - **b**. Find the Jacobian matrix $\frac{D(F)}{D(P,A)}$ in general and then at t=47241.3.

c. Find the Jacobian matrix $\frac{D(P,A)}{D(x,y,z)}$ in general and then at t=47241.3.

d. Find the Jacobian matrix $\frac{D(x,y,z)}{D(t)}$ in general and then at t=47241.3.

e. Find the Jacobian matrix $\frac{D(F)}{D(t)} = \left(\frac{dF}{dt}\right)$ at t = 47241.3.

f. Is the danger increasing or decreasing?