Name_____ ID____

MATH 311

Exam 3

Spring 2001

Section 200 P. Yasskin

1	/20	3	/30
2	/10	4	/40

1. (20 points) Let V be the vector space of functions spanned by $v_1 = t$ and $v_2 = t^2$ with the inner product

$$\langle f, g \rangle = \int_0^1 f(t) g(t) dt$$

a. (10) Find $\cos \theta$ where θ is the angle between v_1 and v_2 .

b. (10) Apply the Gram-Schmidt procedure to $\{v_1, v_2\}$ to produce an orthonormal basis $\{u_1, u_2\}$.

2. (10 points) In \mathbf{R}^5 find the volume of the parallepiped with edges

$$\vec{a} = (1, 0, 2, 0, 1)$$

$$\vec{a} = (1,0,2,0,1)$$

 $\vec{b} = (0,2,1,0,-1)$

$$\vec{c} = (-1, 0, 0, 2, 1)$$

3. (30 points) A paraboloid in \mathbb{R}^4 with coordinates (w, x, y, z), may be parametrized by

$$(w,x,y,z) = \overrightarrow{R}(r,\theta) = (r\cos\theta,r\sin\theta,r^2,r^2)$$

for $0 \le r \le \sqrt{3}$ and $0 \le \theta \le 2\pi$.

a. (10) Find the area of the surface.

b. (10) Compute $P = \iint \sqrt{1 + 8w^2 + 8x^2} dS$ over the surface.

c. (10) Compute $I = \iint (xy \, dw \, dz - wz \, dx \, dy)$ over the surface. $w = r \cos \theta$, $x = r \sin \theta$, $y = r^2$, $z = r^2$

4. (40 points) The solid paraboloid *V* at the right

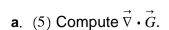
is given by
$$x^2 + y^2 \le z \le 4$$
.

It's boundary (denoted by ∂V) has two parts:

The paraboloid *P* given by $z = x^2 + y^2$ for $z \le 4$.

The disk *D* given by $x^2 + y^2 \le 4$ with z = 4.

Let
$$\vec{G} = (xz^2, yz^2, z(x^2 + y^2))$$
.



b. (10) Compute $\iiint \vec{\nabla} \cdot \vec{G} dV$ over the solid paraboloid V.

HINT: Use cylindrical coordinates.

c. (15) Compute $\iint \vec{G} \cdot d\vec{S}$ over the paraboloid P with normal pointing DOWN and OUT.

HINT: Parametrize the paraboloid with coordinates (r, θ) .

d. (5) Compute $\iint_{\Sigma} \vec{G} \cdot d\vec{S}$ over the disk D with normal pointing UP.

HINT: Parametrize the disk with coordinates (r, θ) .

e. (5) Compute $\iint_{\partial V} \vec{G} \cdot d\vec{S} = \iint_{P_{\downarrow}} \vec{G} \cdot d\vec{S} + \iint_{D\uparrow} \vec{G} \cdot d\vec{S}$ (Note: By Gauss' Theorem, the answers to (b) and (e) should be equal.)