Name	ID	
MATH 311	Final Exam	Spring 2001
Section 200		P. Yasskin

1	/30	4	/20
2	/10	5	/10
3	/15	6	/15

- 1. (30 points) Let S(2,2) be the set of 2×2 symmetric matrices, i.e. 2×2 matrices M satisfying $M^T = M$. Consider the function $L: M(2,2) \to S(2,2)$ given by $L(X) = X + X^T$.
 - **a**. (5) Show that S(2,2) is a subspace of M(2,2), the vector space of 2×2 matrices.

b. (5) Find a basis for S(2,2). What is the dimension of S(2,2)?

c. (5) Show L is linear.

- **d**. (15) For the linear function L, identify
 - (1) Dom(L) =

 $\dim Dom(L) =$

• (1) CoDom(L) =

 $\dim CoDom(L) =$

• (3) Ker(L) =

 $\dim Ker(L) =$

• (3) Ran(L) =

 $\dim Ran(L) =$

- (3) 1 1? Circle: Yes No Why?
- (3) onto? Circle: Yes No Why?
- (1) Verify the Nullity-Rank Theorem for L.

2. (10 points) Consider the function of two matrices $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $Y = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ given by $\langle X, Y \rangle = tr(XY)$

where tr means "trace" which is the sum of the principle diagonal entries, i.e. $tr \begin{pmatrix} w & x \\ y & z \end{pmatrix} = w + z$. Explain why $\langle \ , \ \rangle$ is an inner product on S(2,2), but is not an inner product on M(2,2).

- **3**. (15 points) Consider the linear map $L: P_2 \to \mathbb{R}^3$ given by $L(p) = \begin{pmatrix} p(-1) \\ p(0) \\ p(1) \end{pmatrix}$.

a. (5) Find the matrix of
$$L$$
 relative to the bases $e = \{e_1 = 1, e_2 = t, e_3 = t^2\}$ for P_2 and $i = \begin{cases} \vec{i}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{i}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{i}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ for \mathbf{R}^3 . Call it A .

b. (5) Find the matrix of
$$L$$
 relative to the bases $q = \{q_1 = 1 + t^2, q_2 = t + t^2, q_3 = t^2\}$ for P_2 and $v = \{\vec{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \}$ for \mathbf{R}^3 . Call it B .

c. (5) Find the matrix *B* by a second method.

- **4.** (20 points) Consider the helix *H* parametrized by $\vec{r}(t) = (4\cos t, 4\sin t, 3t)$ between A = (4,0,0) and $B = (-4,0,3\pi)$.
 - **a**. (10) Compute the line integral $\int_{H}^{B} \vec{F} \cdot d\vec{s}$ of the vector field $\vec{F} = (yz, -xz, z)$ along the helix H.

b. (10) Find the total mass of the helix H if the linear mass density is $\rho=z^2$.

5. (10 points) Compute $\oint x \ dx + z \ dy - y \ dz$ around the boundary of the triangle with vertices (0,0,0), (0,1,0) and (0,0,1), traversed in this order of the vertices.

HINT: The *yz*-plane may be parametrized as $\vec{R}(u,v) = (0,u,v)$.

6. (15 points) Gauss' Theorem states

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \ dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$$

where ∂V is the total boundary of V with OUTWARD normal.

Let *V* be the solid cone $\sqrt{x^2 + y^2} \le z \le 2$.

Let C be the conical surface $z = \sqrt{x^2 + y^2}$ for $z \le 2$ with UPWARD normal.

Let *D* be the disk $x^2 + y^2 \le 4$ with z = 2 with UPWARD normal.







