Name_____ ID____

MATH 311 Section 200 Final Exam

Fall 2001

_		
Ρ.	Yass	kin
	. 400	

1	/10	4	/20
2	/20	5-7	/30
3	/20		

1. (10 points) Let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. In particular

$$P_2^0 = \{ p = ax + bx^2 \}$$

a. (8) Show P_2^0 is a subspace of P_2 .

b. (2) What is the dimension of P_2^0 ? Why?

2. (20 points) Again let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. Consider the function $\langle *, * \rangle$ of two polynomials given by

$$\langle p,q\rangle = \int_0^1 \frac{4pq}{x^2} dx.$$

a. (5) Show the function $\langle *, * \rangle$ is an inner product on P_2^0 .

b. (10) Apply the Gram Schmidt procedure to the basis $p_1 = x$, $p_2 = x^2$ to produce an orthogonal basis q_1, q_2 and an orthonormal basis r_1, r_2 .

$$q_1 = q_2 = r_1 = r_2 =$$

c. (5) Find the change of basis matrices $C \atop r \leftarrow p$ and $C \atop p \leftarrow r$.

3. (20 points) Again let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. Consider the function $L: P_2^0 \to P_2$ given by

$$L(p) = p - \frac{dp}{dx}.$$

a. (4) Show the function L is linear.

b. (6) Find the kernel of L. Give a basis.

c. (6) Find the image of L. Give a basis.

- \mathbf{d} . (2) Is L onto? Why?
- **e**. (2) Is L one-to-one? Why?

4. (20 points) Again let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. Again consider the function $L: P_2^0 \to P_2$ given by

$$L(p) = p - \frac{dp}{dx}.$$

a. (10) Find the matrix of L relative to the bases

Call it A.

$$p_1 = x$$
, $p_2 = x^2$ for P_2^0 and $e_1 = 1$, $e_2 = x$, $e_3 = x^2$ for P_2 .

b. (5) Find the matrix of L relative to the bases

$$r_1,r_2$$
 for P_2^0 and $e_1=1$, $e_2=x$, $e_3=x^2$ for P_2 where r_1,r_2 is the orthonormal basis you found in problem 2. Call it B .

c. (5) Recompute B by another method.

5. (30 points) Do this problem, if you did the Volume of Desserts or Planet X Project.

Find the *z*-component of the center of mass of the apple whose surface is given in spherical coordinates by

$$\rho = 1 - \cos \varphi$$

and whose density is 1.

HINT: The φ -integrals can be done using the substitution

$$u = 1 - \cos \varphi$$
.

6. (30 points) Do this problem, if you did the Interpretation of Div and Curl Project.

Find the divergence of the vector field $\vec{F} = (xz^2, yz^2, 0)$ at the point (x, y, z) = (0, 0, c).

- a. by using the derivative defintion:
- **b**. by using the integral definition:

HINTS: For a sphere of radius ρ centered at (a,b,c), if you use standard spherical coordinates, the normal vector is

$$\vec{N} = (\rho^2 \sin^2 \varphi \cos \theta, \rho^2 \sin^2 \varphi \sin \theta, \rho^2 \cos \varphi \sin \varphi)$$

The φ -integral can be done using the substitution $u = \cos \varphi$.

You can ignore terms in the integral proportional to ρ^n with n > 3 since they drop out of the limit.

7. (30 points) Do this problem, if you did the Gauss' and Ampere's Laws Project.

Find the total charge in the cylinder $x^2 + y^2 \le a^2$, $0 \le z \le 1$ if the electric field is

$$\vec{E} = \frac{\hat{r}}{r} = \frac{\vec{r}}{r^2} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$$

where $\vec{r} = (x, y, 0)$ and $r = \sqrt{x^2 + y^2}$.

a. using the derivative form of Gauss' Law.

b. using the integral form of Gauss' Law.

c. What do these results tell you about the location of the electric charge? Why?