Name______ ID_____

MATH 311

Exam 2

Fall 2002

Section 200 Solutions

P. Yasskin

1	/10	3	/30
2	/20	4	/45

1. (10 points) A linear map $f: \mathbf{R}^p \to \mathbf{R}^q$ has matrix $A = \begin{pmatrix} 3 & 0 \\ 2 & -1 \\ 0 & 3 \end{pmatrix}$ and

a linear map $g: \mathbf{R}^q \to \mathbf{R}^p$ has matrix $B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 2 \end{pmatrix}$.

a. (4) What are p and q?

 $A ext{ is } 3 \times 2$. So q = 3 and p = 2.

- **b.** (2) In the composition $g \circ f : \mathbb{R}^n \to \mathbb{R}^n$, what is n? In $g \circ f$, the map f acts first. So n = p = 2.
- **c.** (4) What is the matrix of $g \circ f$?

 $\vec{y} = (g \circ f)(\vec{x}) = g(f(\vec{x}))$ means $\vec{y} = g(\vec{z}) = B\vec{z}$ where $\vec{z} = f(\vec{x}) = A\vec{x}$.

So $\vec{y} = B\vec{z} = BA\vec{x}$. Thus the matrix of $g \circ f$ is $BA = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 2 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 2 & -1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix}$

2. (20 points) Consider the vector space $V = Span\{p_1, p_2, p_3, p_4\}$ where

 $p_1 = 1 + 2x - x^3$, $p_2 = 2 + 4x + x^4$, $p_3 = 3 + 6x - x^3 + x^4$, $p_4 = 2x^3 + x^4$

Pare $\{p_1, p_2, p_3, p_4\}$ down to a basis for V. (Don't bother proving the final set is a basis.) What is dim V?

Are p_1 , p_2 , p_3 , p_4 linearly independent? Assume $ap_1 + bp_2 + cp_3 + dp_4 = 0$. $a(1 + 2x - x^3) + b(2 + 4x + x^4) + c(3 + 6x - x^3 + x^4) + d(2x^3 + x^4) = 0$

c and d are free variables. So p_3 and p_4 can be solved for, leaving p_1 and p_2 as the basis. dim V=2.

3. (30 points) Consider the curvilinear coordinate system
$$(x,y) = \vec{R}(u,v) = (uv, \frac{u}{v})$$
, i.e.

$$x = uv$$
 $y = \frac{u}{v}$

a. (5) Describe the *u*-coordinate curve for which v = 2. (Give an *xy*-equation and describe the shape in words.)

If
$$v = 2$$
, then $x = 2u$, $y = \frac{u}{2}$. So $u = \frac{x}{2}$ and $y = \frac{x}{4}$.

This is the line thru the origin with slope $\frac{1}{4}$.

b. (6) Find \vec{e}_u , the vector tangent to the *u*-curve at the point (u,v)=(1,2).

$$\vec{e}_u = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right) = \left(v, \frac{1}{v}\right) \qquad \vec{e}_u|_{(1,2)} = \left(2, \frac{1}{2}\right)$$

c. (5) Describe the *v*-coordinate curve for which u = 1. (Give an *xy*-equation and describe the shape in words.)

If
$$u = 1$$
, then $x = v$, $y = \frac{1}{v}$. So $y = \frac{1}{x}$.

This is a hyperbola in the first and third quadrants.

d. (6) Find \vec{e}_v , the vector tangent to the *v*-curve at the point (u,v)=(1,2).

$$\vec{e}_v = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right) = \left(u, \frac{-u}{v^2}\right) \qquad \vec{e}_v|_{(1,2)} = \left(1, \frac{-1}{4}\right)$$

e. (8) Let P be the pressure in a gas.

Let
$$\vec{\nabla}P = \left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}\right)$$
 be its gradient in rectangular coordinates and

let
$$\vec{\nabla}(P \circ \vec{R}) = \left(\frac{\partial(P \circ \vec{R})}{\partial u}, \frac{\partial(P \circ \vec{R})}{\partial v}\right)$$
 be its gradient in the u, v -curvilinear coordinates.

If $\vec{\nabla}P \Big|_{(x,y)=(2,1/2)} = (16,20)$, find $\vec{\nabla} \Big(P \circ \vec{R}\Big) \Big|_{(u,v)=(1,2)}$. HINT: Use the chain rule.

By the chain rule:
$$\vec{\nabla}(P \circ \vec{R}) = \vec{\nabla}P \ J\vec{R} = \left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}\right) \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

Note: The columns of the Jacobian are the vectors \vec{e}_u and \vec{e}_v .

Further, when (u,v)=(1,2), we have $(x,y)=\left(uv,\frac{u}{v}\right)=\left(2,\frac{1}{2}\right)$. So

$$\vec{\nabla} \left(P \circ \vec{R} \right) \Big|_{(u,v)=(1,2)} = \vec{\nabla} P \Big|_{(x,y)=(2,1/2)} J \vec{R} \Big|_{(u,v)=(1,2)} = (16,20) \begin{pmatrix} 2 & 1 \\ \frac{1}{2} & \frac{-1}{4} \end{pmatrix} = (42,11)$$

4. (40 points + 5 Extra Credit) Consider the vector spaces $V = Span\{\sinh x, \cosh x\}$ and $M(2,2) = \{2 \times 2 \text{ matrices}\}$. Consider two bases on V:

$$\{h_1 = \sinh x, h_2 = \cosh x\}$$
 and $\{e_1 = e^x, e_2 = e^{-x}\}$

Consider two bases on M(2,2):

$$\left\{ m_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad m_2 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad m_3 = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \quad m_4 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

and

$$\left\{ n_1 = \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array} \right), \quad n_2 = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right), \quad n_3 = \left(\begin{array}{cc} 0 & 0 \\ 1 & -1 \end{array} \right), \quad n_4 = \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right) \right\}$$

Consider the linear map $L: V \to M(2,2)$ given by

$$L(f) = \begin{pmatrix} f(0) & f'(0) \\ f(\ln 2) & f'(\ln 2) \end{pmatrix}$$

Note: $e^{\ln 2} = 2$, $e^{-\ln 2} = \frac{1}{2}$, $\sinh(\ln 2) = \frac{3}{4}$, $\cosh(\ln 2) = \frac{5}{4}$

a. (2) Identify the domain of L and its dimension.

Dom(L) = V $\dim Dom(L) = 2$

b. (2) Identify the codomain of L and its dimension. Codom(L) = M(2,2) $\dim Codom(L) = 4$

c. (4) Is the function L one-to-one? Why? HINT: Let $f = ae^x + be^{-x}$ and $g = ce^x + de^{-x}$.

$$L(f) = \begin{pmatrix} a+b & a-b \\ 2a+\frac{b}{2} & 2a-\frac{b}{2} \end{pmatrix} \qquad L(g) = \begin{pmatrix} c+d & c-d \\ 2c+\frac{d}{2} & 2c-\frac{d}{2} \end{pmatrix}$$

$$L(f) = L(g) \Rightarrow a+b \quad c+d$$

$$a-b \quad c-d$$

$$2a + \frac{b}{2} \quad 2c + \frac{d}{2} \Rightarrow b=d$$

$$2a - \frac{b}{2} \quad 2c - \frac{d}{2}$$

$$\Rightarrow f = g$$

So L is one-to-one.

d. (2+5 E.C.) Find the Image of L. Then express it as the Span of some matrices (with constant entries). What is its dimension?

$$Im(L) = \{L(f)\} = \left\{ \begin{pmatrix} a+b & a-b \\ 2a+\frac{b}{2} & 2a-\frac{b}{2} \end{pmatrix} \right\}$$

$$= \left\{ a \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} + b \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix} \right\} = Span \left\{ \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix} \right\}$$

 $\dim \operatorname{Im}(L) = 2$

Easy Way: L is not onto because $\dim Codom(L) = 4$ but $\dim Im(L) = 2$

Hard Way: Given
$$M = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in M(2,2)$$
, is there an $f = ae^x + be^{-x} \in V$ such that

$$L(f) = M? \quad \text{Given } p, q, r, s, \text{ solve} \begin{pmatrix} a+b & a-b \\ 2a+\frac{b}{2} & 2a-\frac{b}{2} \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \text{ for } a, b.$$

$$\begin{pmatrix} 1 & 1 & | & p \\ 1 & -1 & | & q \\ 2 & \frac{1}{2} & | & r \\ 2 & \frac{-1}{2} & | & s \end{pmatrix} \implies \dots \implies \begin{pmatrix} 1 & 0 & \frac{p+q}{2} \\ 0 & 1 & \frac{p-q}{2} \\ 0 & 0 & | & r - \frac{3}{4}q - \frac{5}{4}p \\ 0 & 0 & | & s - \frac{5}{4}q - \frac{3}{4}p \end{pmatrix}$$

No solution for general p,q,r,s. L is not onto.

f. (4) Find the matrix of *L* from the *h* basis to the *m* basis. (Call it A.)

$$L(h_1) = L(\sinh x) = \begin{pmatrix} 0 & 1 \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix} = m_2 + \frac{3}{4}m_3 + \frac{5}{4}m_4$$

$$\Rightarrow \qquad A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix}$$

$$L(h_2) = L(\cosh x) = \begin{pmatrix} 1 & 0 \\ \frac{5}{4} & \frac{3}{4} \end{pmatrix} = m_1 + \frac{5}{4}m_3 + \frac{3}{4}m_4$$

g. (4) Find the matrix of L from the e basis to the n basis. (Call it B.) Use the definitions of L and B, not the change of basis matrices.

$$L(e_1) = L(e^x) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = n_2 + 2n_4$$

$$L(e_2) = L(e^{-x}) = \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix} = n_1 + \frac{1}{2}n_3$$

$$\Rightarrow B_{n \leftarrow e} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & \frac{1}{2} \\ 2 & 0 \end{pmatrix}$$

h. (6) Find the change of basis matrices between the e and h bases. (Call them C and C.) Be sure to identify which is which!

$$h_{1} = \sinh x = \frac{e^{x} - e^{-x}}{2} = \frac{1}{2}e_{1} - \frac{1}{2}e_{2}$$

$$h_{2} = \cosh x = \frac{e^{x} + e^{-x}}{2} = \frac{1}{2}e_{1} + \frac{1}{2}e_{2}$$

$$\Rightarrow C = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Rightarrow C_{h\leftarrow e} = C^{-1}_{e\leftarrow h} = \frac{1}{\frac{1}{4} + \frac{1}{4}} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

i. (0) The change of basis matrices between the m and n bases are

$$C_{m \leftarrow n} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \quad \text{and} \quad C_{n \leftarrow m} = C_{m \leftarrow n}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

These are given. Do not compute them!

j. (4) Recompute B_n , the matrix of L from the e basis to the n basis by using the change of basis matrices.

$$B_{n \leftarrow e} = C \quad A \quad C = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \frac{3}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{3}{4} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \cdots = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & \frac{1}{2} \\ 2 & 0 \end{pmatrix}$$

k. (2) For the function $f = 6e^x + 4e^{-x}$, compute L(f) from the definition of L.

$$L(f) = \begin{pmatrix} f(0) & f'(0) \\ f(\ln 2) & f'(\ln 2) \end{pmatrix} = \begin{pmatrix} 10 & 2 \\ 14 & 10 \end{pmatrix}$$

I. (3) For the function $f = 6e^x + 4e^{-x}$, compute $(f)_e$ and $(f)_h$ which are the components of f relative to the e and h bases, respectively. Check $(f)_h$ by hooking the components onto the basis.

$$(f)_{e} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \qquad (f)_{h} = C \\ h \leftarrow e \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 10 \end{pmatrix}$$
$$f = 2h_{1} + 10h_{2} = 2\sinh x + 10\cosh x = 2\left(\frac{e^{x} - e^{-x}}{2}\right) + 10\left(\frac{e^{x} + e^{-x}}{2}\right) = 6e^{x} + 4e^{-x}$$

m. (3) For the function $f = 6e^x + 4e^{-x}$, compute $[L(f)]_n$ and check by hooking the components onto the basis.

$$[L(f)]_{n} = \underset{n \leftarrow e}{B} (f)_{e} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & \frac{1}{2} \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 2 \\ 12 \end{pmatrix}$$

$$L(f) = 4n_{1} + 6n_{2} + 2n_{3} + 12n_{4} = 4 \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} + 6 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + 2 \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} + 12 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$