Name_____ ID____

MATH 311

Final Exam

Fall 2002

Section 200

P. Yasskin

1-3	/30	6	/20
4	/20	7	/10
5	/20	8	/10

Multiple Choice: (10 points each) Work Out: (points indicated) Extra Credit: (10 points)

1. (10 points) If $L: P_2 \to \mathbb{R}$ is a linear function satisfying

$$L(1+x+x^2) = 2$$
 $L(x+x^2) = -1$ and $L(x^2) = 3$

find $L(2 + 3x + 5x^2)$.

- **a.** 16
- **b.** 9
- **c.** 4
- **d.** 0
- **e.** -4

- **2.** (10 points) Find the plane tangent to the hyperbolic paraboloid x yz = 0 at the point P = (6,3,2). Which of the following points does **not** lie on this plane?
 - **a.** (-6,0,0)
 - **b.** (0,3,0)
 - **c.** (0,0,2)
 - **d.** (-1,1,1)
 - **e.** (1,-1,-1)

- 3. (10 points) Duke Skywater is flying the Millenium Eagle through a polaron field. His galactic coordinates are (2300,4200,1600) measured in lightseconds and his velocity is $\vec{v}=(.2,.3,.4)$ measured in lightseconds per second. He measures the strength of the polaron field is p=274 milliwookies and its gradient is $\vec{\nabla}p=(3,2,2)$ milliwookies per lightsecond. Assuming a linear approximation for the polaron field and that his velocity is constant, how many seconds will Duke need to wait until the polaron field has grown to 286 milliwookies?
 - **a.** 2
 - **b.** 3
 - **c.** 4
 - d. 6e. 12

4. (20 points) Consider the linear map $f: \mathbb{R}^5 \to \mathbb{R}^3$ given by $f(\vec{x}) = A\vec{x}$ where

$$A = \left(\begin{array}{ccccc} 1 & 2 & -1 & 3 & 1 \\ 1 & 2 & 0 & 3 & -1 \\ -2 & -4 & 0 & -6 & 2 \end{array}\right).$$

When necessary, let $\vec{x} \in \mathbb{R}^5$ be $\vec{x} = \begin{pmatrix} r \\ s \\ t \\ u \\ v \end{pmatrix}$ and $\vec{z} \in \mathbb{R}^3$ be $\vec{z} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- **a.** (2) Identify the domain and give its dimension.
- **b.** (2) Identify the codomain and give its dimension.
- **c.** (2) Verify that f is linear.
- **d.** (4) Find the kernel of *f.* Write it as a *Span* and give a basis and its dimension.

e.	(4)	Find the	image of	f.	Write it as a	Span	and give a basis and its	dimension.
f.	(2)	Verify yo	ur answer	s ar	re consistent	with th	e Nullity-Rank Theorem.	

 ${f g.}$ (2) Is f one-to-one? Why?

h. (2) Is f onto? Why?

5. (20 points) Consider the vector space P_2 of polynomials of degree ≤ 2 . Consider the bases

$$e_1 = 1$$
 $e_2 = x$ $e_3 = x^2$
 $f_1 = 1 + x$ $f_2 = x$ $f_3 = -x + x^2$

Consider the function $L: P_2 \rightarrow P_2$ given by

$$L(p) = 2p(0) + p(1)x$$

a. (4) Find the matrix of L relative to the e-basis (on both the domain and the codomain). Call it A.

b. (8) Find the change of basis matrices between the e and f bases. (Call them C and C.) Be sure to identify which is which!

c. (4) Find the matrix of L relative to the f-basis. Call it B.

d. (4) Find B_{f-f} by a second method.

6. (20 points) **Stokes' Theorem** states that if S is a nice surface in \mathbb{R}^3 and ∂S is its boundary curve traversed counterclockwise as seen from the tip of the normal to S and \vec{F} is a nice vector field on S then

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{S}$$

Verify Stokes' Theorem if

$$F = (y, -x, x^2 + y^2)$$

and S is the paraboloid $z = x^2 + y^2$ for $z \le 4$ with **normal pointing up and in**.

Remember to check the orientations.

The paraboloid may be parametrized by:

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$$

a. (10) Compute $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ using the following steps:

$$\vec{\nabla} \times \vec{F} =$$

$$(\vec{\nabla} \times \vec{F})(\vec{R}(r,\theta)) =$$

$$\vec{R}_r =$$

$$\vec{R}_{\theta} =$$

$$\vec{N} =$$

$$\iint\limits_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

b. (10) Recall $F = (y, -x, x^2 + y^2)$ and S is the paraboloid $z = x^2 + y^2$ for $z \le 4$ with **normal pointing up and in**. Compute $\oint_{\partial S} \vec{F} \cdot d\vec{s}$ using the following steps:

$$\vec{r}(\theta) =$$

$$\vec{v}(\theta) =$$

$$\vec{F}(\vec{r}(\theta)) =$$

$$\oint_{\partial S} \vec{F} \cdot d\vec{s} =$$

7. (10 points) The paraboloid at the right is the graph of the equation $z = x^2 + y^2$. It may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$.

Find the area of the paraboloid for $z \le 4$.

8. (10 points) A paraboloid in \mathbf{R}^4 with coordinates (w,x,y,z), may be parametrized by $(w,x,y,z)=\vec{R}(r,\theta)=(r\cos\theta,r\sin\theta,r^2,r^2)$ for $0\leq r\leq 3$ and $0\leq \theta\leq 2\pi$. Compute $I=\iint (xz\,dw\,dy-wy\,dx\,dz)$ over the surface.