MATH 311 Exam 1 Spring 2003
Section 200 P. Yasskin

1	/10	4	/15
2	/10	5	/25
3	/20	6	/20

If you use row or column operations, be sure to give your reasons.

1. (10 points) Find a parametric equation for the line tangent to the curve $\vec{r}(t) = (t, t^2, t^3)$ at the point where t = 2.

2. (10 points) Find the non-parametric equation for the plane tangent to the surface $x^3y^2 + xz^3 = 31$ at the point (x, y, z) = (1, 2, 3).

3. (20 points) The following is a parametric surface in \mathbb{R}^4 :

$$(w,x,y,z) = \vec{R}(u,v) = \left(u\sqrt{2}\cos v, u\sqrt{2}\sin v, v\cos u, v\sin u\right)$$

a. Find the two tangent vectors \vec{e}_u and \vec{e}_v at the point where $(u,v)=\left(\frac{\pi}{2},\frac{\pi}{4}\right)$.

b. Find a parametric equation for the plane tangent to the surface $\vec{R}(u,v)$ at the point where $(u,v)=\left(\frac{\pi}{2},\frac{\pi}{4}\right)$.

4. (15 points) Let

$$M = \left(\begin{array}{cccc} 2 & 5 & 4 & -1 \\ 0 & 1 & -2 & 1 \\ 1 & 3 & 0 & -2 \\ 2 & 6 & 3 & x \end{array}\right)$$

a. Compute $\det M$ (as a function of x).

b. For what value(s) of x does M^{-1} exist? Why?

5. (25 points) Let
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
.

a. Compute A^{-1} . Check it.

b. Solve the equations 3x + 2y = 2x - z = 1y + 2z = 3

- **6.** (20 points) (Multiple Choice: Circle one) If C = AB, then $(C^{\mathsf{T}})^{-1} =$
 - **a.** $A^{\mathsf{T}}B^{-1} + A^{-1}B^{\mathsf{T}}$
 - **b.** $B^{-1}A^{\mathsf{T}} + B^{\mathsf{T}}A^{-1}$
 - **c.** $(A^{-1})^{\mathsf{T}}(B^{-1})^{\mathsf{T}}$
 - **d.** $(B^{\mathsf{T}})^{-1}(A^{\mathsf{T}})^{-1}$

Now prove it. You may use any result proved in class or in the book or on homework.