Name_____ ID____

MATH 311 Section 200 Exam 3

Spring 2003 P. Yasskin

1	/15	3	
2	/25	4	

/30

/30

1. (15 points) Consider the "diamond shaped" region D bounded by the lines y = x and y = 3x and the parabolas $y = x^2$ and $y = 2x^2$.

Compute $\iint_{D} \frac{y}{x} dA$ over the diamond.

Here are some steps to follow:

• Find the Jacobian factor.

- lacktriangle Express the integrand in terms of u and v.
- lacktriangle Express the boundary curves in terms of u and v.
- Compute $\iint_D \frac{y}{x} dA$.

- **2.** (25 points) Consider the parametric curve $r(t) = \left(2t, t^2, \frac{1}{3}t^3\right)$ for $0 \le t \le 2$.
 - **a.** (15 pts) Compute $\int_{(0,0,0)}^{(4,4,8/3)} (xy + 3z) ds$ along this curve

b. (10 pts) Compute $\int_{(0,0,0)}^{(4,4,8/3)} \vec{F} \cdot d\vec{s}$ along this curve where $\vec{F} = (3z,2y,x)$.

3. (30 points) Consider the parametric surface

$$\vec{R}(p,q) = (p,q,p^2 + q^2)$$

 $\quad \text{for} \quad -1 \leq p \leq 1 \quad \text{and} \quad -1 \leq q \leq 1.$

a. (15 pts) Find the total mass $M = \iint \delta \, dS$ on this surface if the surface density is $\delta = \sqrt{4z+1}$.

b. (15 pts) Find the flux $\iint \vec{F} \cdot d\vec{S}$ of the vector field $\vec{F} = (3x, 3y, 3z)$ through this surface with normal pointing down.

4. (30 points) Use 2 methods to compute

$$\iint_{C} \vec{F} \cdot d\vec{S} \quad \text{for} \quad \vec{F} = (5xz, 5yz, z^{2})$$

over the conical surface $\ C$ given by

$$z = \sqrt{x^2 + y^2} \le 3$$

with normal pointing down and out.

a. (15 pts) METHOD 1: Compute $\iint_C \vec{F} \cdot d\vec{S}$ directly as a surface integral using the parametrization $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

HINT: Find \vec{e}_r , \vec{e}_θ , \vec{N} and \vec{F} on the cone.

Recall: $\vec{F} = (5xz, 5yz, z^2)$ and C is the conical surface $z = \sqrt{x^2 + y^2} \le 3$ with normal pointing down and out.

b. (15 pts) METHOD 2: Compute $\iint_C \vec{F} \cdot d\vec{S}$ by applying Gauss' Theorem

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} dV = \iint_{\partial V} \vec{F} \cdot d\vec{S} \quad \text{to the solid cone} \quad V \quad \text{whose boundary is} \quad \partial V = C + D$$

where C is the conical surface and D is the disk at the top of the cone.