Determinant Theorems

Definitions:

If A is an $n \times n$ matrix, then the determinant of A, denoted by either det A or |A|, is defined by

$$\det A = |A| = \sum_{\text{perm } p} \varepsilon_p A_{1p_1} \cdots A_{ip_i} \cdots A_{np_n}$$

where ε_p is the sign of the permutation p given by

$$\varepsilon_p = \begin{cases} 1 & \text{if } p \text{ is even} \\ -1 & \text{if } p \text{ is odd} \end{cases}$$

Row Notation: If $\vec{v}_1, \dots, \vec{v}_n$ are *n* vectors in \mathbb{R}^n then $\det(\vec{v}_1, \dots, \vec{v}_n)$ is the determinant of the matrix whose rows are $\vec{v}_1, \dots, \vec{v}_n$; i.e.

$$\det(\vec{v}_1, \dots, \vec{v}_n) = \det \begin{pmatrix} \leftarrow \vec{v}_1 \rightarrow \\ \vdots \\ \leftarrow \vec{v}_n \rightarrow \end{pmatrix}$$

Theorems:

1. Transpose:

$$\det A^{\mathsf{T}} = \det A$$

- Every theorem below involving rows can be restated in terms of columns.
- 2. Triangular:

If A is triangular (or diagonal), then det A is the product of the diagonal entries.

3. Row of zeros:

$$\det(\vec{v}_1, \dots, \vec{0}, \dots, \vec{v}_n) = 0$$

4. Interchange rows:

$$\det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{w}, \dots, \vec{v}_n) = -\det(\vec{v}_1, \dots, \vec{w}, \dots, \vec{u}, \dots, \vec{v}_n).....(\text{Row Operation I})$$

5. Two equal rows:

$$\det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{v}_n) = 0$$

6. Multiple of row:

$$\det(\vec{v}_1, \dots, c\vec{u}, \dots, \vec{v}_n) = c \det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{v}_n).$$
 (Row Operation II)

7. Addition in row:

$$\det(\vec{v}_1, \dots, \vec{u} + \vec{w}, \dots, \vec{v}_n) = \det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{v}_n) + \det(\vec{v}_1, \dots, \vec{w}, \dots, \vec{v}_n)$$

8. Add multiple of one row to another row:

$$\det(\vec{v}_1, \dots, \vec{u} + c\vec{w}, \dots, \vec{w}, \dots, \vec{v}_n) = \det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{w}, \dots, \vec{v}_n)...$$
 (Row Operation III)

9. Multiple of matrix:

$$\det(cA) = c^n \det A$$

10. Product of Matrices:

$$det(AB) = det A det B$$

11. Invertibility:

$$\det A \neq 0 \iff A \text{ is invertible (non-singular)} \iff AX = B \text{ has a unique solution}$$

 $\det A = 0 \iff A \text{ is non-invertible (singular)} \iff AX = B \text{ has no solution or } \infty\text{-many solutions}$

12. Determinant of inverse:

If A is invertible, then
$$\det A^{-1} = \frac{1}{\det A}$$