
Math 460 - 500: © P. Yasskin Fall 2017

Special Relativity & Electromagnetism
In the following problems, we study electromagnetism in special relativity. We regard spacetime as the vector space 4 with a
Lorentz signature metric (pseudo-inner product). Thus, if we choose the orthonormal basis to be

e0  1,0,0, 0 e1  0,1,0, 0 e2  0,0,1, 0 e3  0,0,0, 1

(so that all indices run from 0 to 3) and the dual basis to be , then the metric is

      

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

and the inverse metric is

1  e  e  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

Derivatives will be denoted by   
x and indices will be lowered and raised using  and 1.

Use Greek letters, , to denote 0, 1,2,3 and use latin leters, ijk, to denote 1, 2,3.

Throughout, we will study the electromagnetic field which is the 2-form

F  F   F 

0 E1 E2 E3

E1 0 B3 B2

E2 B3 0 B1

E3 B2 B1 0

,

(Notice that F ij   ijkBk.) the electromagnetic potential which is the 1-form

A  A A  ,A1,A2,A3

and the electromagnetic current which is the vector

J  Je J  ,J1,J2,J3.

1. Write out the components of F with its indices raised, i.e., F.

2. Write out the components of the Hodge dual of F:

 F  1
2
F, , 

3. Write out the independent non-zero components of the Hodge dual of J:

 J  J, , , 

4. Show that the rank 3 tensor

S  F  F  F

is totally antisymmetric, and hence is a 3-form. (HINT: There are three pairs of indices to transpose.)



5. Write out the components of the equations

F  F  F  0 F  4J

to see that these are the Maxwell equations:

  B  0   E  4

  E  tB  0   B  tE  4J

6. Write out the components of the equations

  F    F    F  4J   F  0

to see they are also the Maxwell equations.

7. Write out the components of the equations

F  A  A

to find expressions for E and B in terms of  and A . (NOTE:  is the negative of the usual scalar potential.)

8. Show (in 4-dimensional notation) that if

F  A  A

is satisfied, then

F  F  F  0

is automatically satisfied (provided mixed partials are equal). (NOTE: The 3-dimensional version of these equations is
the pair of identities:     A  0 and     0 .) Consequently, this subset of the Maxwell equations is actually an
identity, and is also refered to as the electromagnetic Bianchi identity.

9. Substitute

F  A  A

into the remaining Maxwell equation

F  4J

to obtain the Maxwell equation for A.

10. Write out the components of the equation

J  0

to see that this is conservation of electric charge. Show that if

F  4J

is satisfied, then

J  0

is automatically satisfied. This is sometimes referred to as an automatic conservation law.

11. Let  be a function. Also let

A
  A   F

  A
  A

 .

This is called a gauge transformation. Relate F
 to F to see that the electromagnetic field is gauge invariant.

12. Given A, show that there always exists a function  such that A
 satisfies

A
  0.

(NOTE: You may assume that it is always possible to solve a wave equation with an arbitrary but specified source.)
This is called the Lorentz gauge. Write out the Maxwell equations for A

 in the Lorentz gauge to see that the Maxwell
equations may always be solved for any arbitrary but specified current J.



13. Write out the function

L   1
4
FF

in terms of E and B. This function is called the Lagrangian density for the vacuum electromagnetic field. It is sometimes
interpreted as the difference between the kinetic energy 1

2
E

2
and the potential energy 1

2
B

2
. Also write out the

Lagrangian density in terms of  and A.

14. Write out the components of the tensor

T  1
4

FF 
  1

4
FF

in terms of E and B, to find the electromagnetic energy density, momentum density, energy current and momentum
current (or stress). This tensor is called the Maxwell energy-momentum-stress tensor.

15. In 4-dimensional notation, compute the divergence of the energy-momentum tensor and use the Bianchi identities and
the Maxwell equations to show that

T  JF.

This shows that the electromagnetic energy-momentum is not conserved if the current is non-zero. The reason for this is
that we have ignored the energy-momentum of the charged particles producing the current. In problem 16, we study the
motion of a charged particle. Then in problem 17 we study the energy-momentum tensor of a fluid of charged particles.

16. A particle of mass m with electric charge q is moving on the parametrized path x where  is the proper time.
Consequently, it has unit timelike tangent vector

U  Ue U  x


 ,v1,v2,v3

and where

  1
1  |v|2

.

Further, its 4-momentum is

p  mU.

Write out the components of the equations

Up  qUF 


to obtain the Lorentz force and power laws. (HINTS: Don’t expand p . Be careful with the factors of .)

17. Consider a fluid of charged particles of rest mass m and charge q, with fluid velocity U and energy density  in the
instantaneous local rest frame. Then the charge density in the instantaneous local rest frame is

q
m  and the

electromagnetic current is

J 
q
m U

Assuming that the particles are non-interacting except for their electromagnetic forces, then the energy momentum
tensor for the fluid is that for dust:

Tfluid
  UU

each particle moves according to the Lorentz force equation:

UmU  qUF 


the energy momentum tensor for the electromagnetic field is

Tem
  1

4
FF

  1
4
FF,

and the electromagnetic field satisfies the Bianchi identities and the Maxwell equations with current J.
Then, as seen in problem 10, the electromagnetic current is conserved:

J  0

and, as seen in problem 15, the electromagnetic energy-momentum tensor satisfies:

Tem
  JF.

Now use the Lorentz force equation and the conservation of electromagnetic current to show that the fluid
energy-momentum tensor satisfies:



Tfluid
  JF.

(HINT: Factor Tfluid
 as

Tfluid
  UU 

and use the product rule.) Thus the total energy-momentum is conserved:

 Tem
  Tfluid

  0.

In problems 18 and 19, we study the behavior of the electromagnetic field under rotations and Lorentz boosts. Under a
general Lorentz transformation, 

 , the electromagnetic field transforms according to:

F   F1  
 1  



18. First assume that the Lorentz transformation is a rotation about the z-axis:

 
 

1 0

0 R


1 0 0 0

0 cos sin 0

0  sin cos 0

0 0 0 1

1  
 

1 0

0 R1


1 0 0 0

0 cos  sin 0

0 sin cos 0

0 0 0 1

where R is a 3  3 rotation matrix. Show that E and B transform as vectors:

E i   R i 
jE j B i   R i 

jB j.

Show that this generalizes to arbitrary rotation matrices.

19. Now assume that the Lorentz transformation is a boost in the z-direction with velocity v  vêz :

 
 

cosh 0 0 sinh

0 1 0 0

0 0 1 0

sinh 0 0 cosh

1  
 

cosh 0 0  sinh

0 1 0 0

0 0 1 0

 sinh 0 0 cosh

where

cosh    1
1  v2

sinh  v  v
1  v2

.

Find expressions for E  and B  in terms of E and B and either  or v .



NOTE: DO NOT TRY THE REMAINING PROBLEMS UNTIL YOU HAVE COMPLETED ALL OF THE
PREVIOUS PROBLEMS.
In problems 20 and 21, we study the Lagrangian and Hamiltonian formulations of electromagnetism. Each problem
begins with a discussion of the analogous formulation of classical mechanics and the situation for a general field theory
with fields A, for A  1, ,N . Then the special case of electromagnetism is treated with A replaced by A.

20. In classical mechanics, the Lagrangian is

L  T  V  1
2
m|v|2  Vx.

In discussing this Lagrangian, it is useful to regard x and v  dx
dt

as independent variables. One then computes

L
x i

 iV p i  L
v i

 mv i.

(The quantity p i is called the conjugate momentum to x i .) Then the Euler-Lagrange equations for this Lagrangian are
d
dt

L
v i

 L
x i

 0

or
d
dt

mv i  iV  0

which is Newton’s equation with the force identified as F i  iV , the gradient of the potential.
Similarly, in field theory, in discussing a Lagrangian density, L, it is useful to regard the fields A and their derivatives
A as independent variables. One then computes

L
A

A
  L

A
.

(The quantity A  A
0 is called the conjugate momentum to A , while the 4-vector A

 is called the conjugate
multi-momentum to A .) Then the Euler-Lagrange equations for the Lagrangian density, L, are

 L
A

 L
A

 0.

In class, I will derive both sets of Euler-Lagrange equations given above from appropriate variational principles. In this
exercise, we apply the field theory version to the vacuum Maxwell Lagrangian density,

L   1
4
FF.

Compute
L
A

  L
A

.

Identify the conjugate momenta to A0   and to A i :

  0  L
0A

.

Compute the Euler-Lagrange equations

 L
A

 L
A

 0

and verify that these are the vacuum Maxwell equations.
HINTS: Explicitly write out all metrics in L but do not use the indices  or  and do not expand F in terms of
derivatives of A . Use the product rule. Then compute the derivatives of F using formulas such as

A

A
 


.


