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ABSTRACT

Title of Thesis: Metric—Connection Theories of Gravity

‘Philip ¥. Yasskin, Doctor of Philosophy, 1979

Thesis Directed by: Dr. Robert H. Gowdy, Assistant Professor,
Department of Physics and Astronomy

In this thesis T study the metric-connection theories of gravity.

These are defined as those theories in which the gravitational field is

described by a metric and a connection which may be non-metric-compatible

and/or non-torsion-free. In the broadest sense, this includes all of the

metric theories. (These use the Christoffel connection.) However, I am

mostly comcerned with theories whose connection cannot be completely

specified in terms of the metrie. Although I sometimes consider completely

- general connections, I often restrict my attention to Cartan connections

{metric-compatible but noﬁ—toréion—free).

In the context of metrié—Carfan connection theories, I try to answer
the question, is the torsion oBservaBle? Using a2 method similar to that
used by Papapetrou and Dixon in the context of metric theories, I derive
éropagatioﬁ eﬁuations for a body's momentum and angular momentum. These
show that elementary particle spiné feel the torsion but orbital aﬁgular
momentum does not. However, the measurement of the effect of toréion on
spin ié beyond present technology. As a corollary, I prove that in a metric
theory, spin and orbital angular momentum propagate in the same way.

In any metric-—connection theory, the Christoffel connection is still
present. I develop a two tangenﬁ.space formalism which gives geometrrical

insight into the presence of two connections. . The Christoffel conmection
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acts on one of the tangent spaces (calléd the external tangeot space)
while tho full connection acts on toe othexr tangent space (called the
internal tangent space). The isomorphism between the two tangent spaces
(called the soldering isomorphism) corresponds to the orthonormal frame
in the usual one tangent space formalism. Its covariant &erivative is

the defect tensor which is the difference between the full connection and

the Christoffel conmnectiomn.

The two tangent space formalism suggests that the metric connection
theories may be conoidered as.the gauge theooies of the spacetime symﬁetries.
The role of the gauge potentials is played by the full connection and the
éoldering isomorphism. The spacetime symmetry group is the structure group
of the internal tangent bundle and its specification may place restrictions

on the full connection. The groups 0(3,1,R) and SL(2,C) require a Cartan

connection; GL(4,R) allows a genefal connection; while GL(2,C) unifies the

electromagnetic potential with a Weyl-Cartan connection.

As an example of a computation using toe two tangent space formalism,
I rederive the conséfvation laws of energy-momentum and angular momentum by
applying Noether's theorem to coordinate and 0(3,1,R)-frame invariance.
Considering GL(4,R)-frame inﬁariance, I glso obtain conservation laws for
hypermomentum and dilation current.

The conservation laws and propagation equations only involve the
kinematics of the gravitational fieids. To understand their dynamics, one
must choose gravitational field equaoions. I restrict my atoention to
field equations which involve no higher than second derivatives of the
orthonormal”fraﬁe and a Cartan connection. This is a different class of
theories than the previously investigated metric-torsion theories which

required no higher than second derivatives of the metric and torsion. The
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Lagrangian can now be the Christoffel scalar curvature plus any function ‘

of the Cartan curvature and the torsion. This is a very large class of

theories. I show that there is a twelve parameter family of such theories

whose Lagrangians are quadratic polynomials in the Cartan curvature and

torsion.

I further restrict my attention to the gravitational Lagrangian,
A A0 AB 'YG
=R +
L=R+R By S R o ?

where ﬁasyﬁ is the Cartan curvature. I verify that this theory has auto-

matic Noether comservation laws and I prove a Birkhoff theorem which says

that the unique 0(3)-spherically symmetric, vacuum solution ig the

Schwarzschild metric and zero torsion.
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