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Linear Algebra

Lecture 7:

Inverse matrix (continued).



Diagonal matrices

Definition. A square matrix is called diagonal if all
non-diagonal entries are zeros.

Example.





7 0 0
0 1 0
0 0 2



, denoted diag(7, 1, 2).

Theorem Let A = diag(s1, s2, . . . , sn),
B = diag(t1, t2, . . . , tn).

Then A + B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).

AB = diag(s1t1, s2t2, . . . , sntn).



Identity matrix

Definition. The identity matrix (or unit matrix) is
a diagonal matrix with all diagonal entries equal to 1.

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0
0 1 0
0 0 1



.

In general, I =







1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1






.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Inverse matrix

Definition. Let A be an n×n matrix. The inverse
of A is an n×n matrix, denoted A−1, such that

AA−1 = A−1A = I .

If A−1 exists then the matrix A is called invertible.
Otherwise A is called singular.

Let A and B be n×n matrices. If A is invertible
then we can divide B by A:

left division: A−1B, right division: BA−1.



Basic properties of inverse matrices:

• The inverse matrix (if it exists) is unique.

• If A is invertible, so is A−1, and (A−1)−1 = A.

• If n×n matrices A and B are invertible, so is
AB , and (AB)−1 = B−1A−1.

• If n×n matrices A1, A2, . . . , Ak are invertible, so
is A1A2 . . . Ak , and (A1A2 . . . Ak)

−1 = A−1

k
. . . A−1

2
A−1

1
.



Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n
).











d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...
0 0 . . . dn











−1

=











d−1

1
0 . . . 0

0 d−1

2
. . . 0

...
... . . . ...

0 0 . . . d−1

n













Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n
).

Proof: If all di 6= 0 then, clearly,

diag(d1, . . . , dn) diag(d−1

1
, . . . , d−1

n
) = diag(1, . . . , 1) = I ,

diag(d−1

1
, . . . , d−1

n
) diag(d1, . . . , dn) = diag(1, . . . , 1) = I .

Now suppose that di = 0 for some i . Then for any
n×n matrix B the ith row of the matrix DB is a
zero row. Hence DB 6= I .



Inverting 2-by-2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is det A = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0.

If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0. If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

Proof: Let B =

(

d −b

−c a

)

. Then

AB = BA =

(

ad−bc 0
0 ad−bc

)

= (ad − bc)I2.

In the case det A 6= 0, we have A−1 = (det A)−1B .
In the case det A = 0, the matrix A is not invertible as
otherwise AB = O =⇒ A−1AB = A−1O =⇒ B = O

=⇒ A = O, but the zero matrix is singular.



Problem. Solve a system

{

4x + 3y = 5,
3x + 2y = −1.

This system is equivalent to a matrix equation
(

4 3
3 2

) (

x

y

)

=

(

5
−1

)

.

Let A =

(

4 3
3 2

)

. We have det A = − 1 6= 0.

Hence A is invertible. Let’s multiply both sides of the matrix
equation by A−1 from the left:

(

4 3
3 2

)

−1 (

4 3
3 2

) (

x

y

)

=

(

4 3
3 2

)

−1 (

5
−1

)

,

(

x

y

)

=

(

4 3
3 2

)

−1(

5
−1

)

=
1

−1

(

2 −3
−3 4

)(

5
−1

)

=

(

−13
19

)

.



System of n linear equations in n variables:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·

an1x1 + an2x2 + · · · + annxn = bn

⇐⇒ Ax = b,

where

A =











a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . . ...

an1 an2 . . . ann











, x =











x1

x2

...
xn











, b =











b1

b2

...
bn











.

Theorem If the matrix A is invertible then the
system has a unique solution, which is x = A−1b.



Problem. Solve the matrix equation XA+B = X ,

where A =

(

4 −2
1 1

)

, B =

(

5 2
3 0

)

.

Since B is a 2×2 matrix, it follows that XA and X

are also 2×2 matrices.

XA + B = X ⇐⇒ X − XA = B

⇐⇒ X (I − A) = B ⇐⇒ X = B(I − A)−1

provided that I−A is an invertible matrix.

I−A =

(

−3 2
−1 0

)

,



• I−A =

(

−3 2
−1 0

)

,

• det(I−A) = (−3) · 0 − 2 · (−1) = 2,

• (I−A)−1 = 1

2

(

0 −2
1 −3

)

,

• X = B(I−A)−1 =

(

5 2
3 0

)

1

2

(

0 −2
1 −3

)

= 1

2

(

5 2
3 0

) (

0 −2
1 −3

)

= 1

2

(

2 −16
0 −6

)

=

(

1 −8
0 −3

)

.



Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are
equivalent:

(i) A is invertible;
(ii) x = 0 is the only solution of the matrix equation Ax = 0;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row
operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity
matrix into the inverse matrix A−1.

Theorem 3 For any n×n matrices A and B ,

BA = I ⇐⇒ AB = I .



Row echelon form of a square matrix:































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































invertible case noninvertible case


