MATH 304 Linear Algebra Lecture 12: Subspaces of vector spaces. Span.

Vector space

A vector space is a set V equipped with two operations, **addition**

$$V imes V
i (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y} \in V$$

and scalar multiplication

$$\mathbb{R} imes V
i (r, \mathbf{x}) \mapsto r\mathbf{x} \in V$$
,

that have the following properties:

Properties of addition and scalar multiplication

A1. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ for all $\mathbf{a}, \mathbf{b} \in V$.

A2. $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.

A3. There exists an element of V, called the *zero* vector and denoted **0**, such that $\mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a}$ for all $\mathbf{a} \in V$.

A4. For any $\mathbf{a} \in V$ there exists an element of V, denoted $-\mathbf{a}$, such that $\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$. A5. $r(\mathbf{a} + \mathbf{b}) = r\mathbf{a} + r\mathbf{b}$ for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in V$. A6. $(r + s)\mathbf{a} = r\mathbf{a} + s\mathbf{a}$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A7. $(rs)\mathbf{a} = r(s\mathbf{a})$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A8. $1\mathbf{a} = \mathbf{a}$ for all $\mathbf{a} \in V$. • Associativity of addition implies that a multiple sum $\mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_k$ is well defined for any $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in V$.

• Subtraction in V is defined as usual: $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}).$

• Addition and scalar multiplication are called **linear operations**.

Given
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$$
 and $r_1, r_2, \dots, r_k \in \mathbb{R}$,

$$\boxed{r_1 \mathbf{u}_1 + r_2 \mathbf{u}_2 + \dots + r_k \mathbf{u}_k}$$

is called a **linear combination** of $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{a} \in V$, the negative $-\mathbf{a}$ is unique.
- $\mathbf{a} + \mathbf{b} = \mathbf{c} \iff \mathbf{a} = \mathbf{c} \mathbf{b}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
- $\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{c} \iff \mathbf{a} = \mathbf{b}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
- $0\mathbf{a} = \mathbf{0}$ for any $\mathbf{a} \in V$.
- $(-1)\mathbf{a} = -\mathbf{a}$ for any $\mathbf{a} \in V$.

Examples of vector spaces

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \dots) , $x_i \in \mathbb{R}$
- $\{0\}$: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f:\mathbb{R}\to\mathbb{R}$
- $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f:\mathbb{R}\to\mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f : \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$
- \mathcal{P}_n : polynomials of degree **less than** *n* \mathcal{P}_n is a subspace of \mathcal{P} .

Subspaces of vector spaces

Counterexamples.

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- \mathbb{Q}^n : vectors with rational coordinates

 \mathbb{Q}^n is not a subspace of \mathbb{R}^n .

 $\sqrt{2}(1, 1, \dots, 1) \notin \mathbb{Q}^n \implies \mathbb{Q}^n$ is not a vector space (scaling is not well defined).

- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- P_n : polynomials of degree n (n > 0)
- P_n is not a subspace of \mathcal{P} .

 $-x^n + (x^n + 1) = 1 \notin P_n \implies P_n$ is not a vector space (addition is not well defined).

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\mathbf{x}, \mathbf{y} \in S \implies \mathbf{x} + \mathbf{y} \in S,$$

 $\mathbf{x} \in S \implies r\mathbf{x} \in S \text{ for all } r \in \mathbb{R}.$

Proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$. System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Any solution (x_1, x_2, \ldots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all $b_i = 0$.

Theorem The solution set of a system of linear equations in n variables is a subspace of \mathbb{R}^n if and only if all equations are homogeneous.

Proof: "only if": the zero vector $\mathbf{0} = (0, 0, ..., 0)$ is a solution only if all equations are homogeneous.

"if": a system of homogeneous linear equations is equivalent to a matrix equation $A\mathbf{x} = \mathbf{0}$.

 $A\mathbf{0} = \mathbf{0} \implies \mathbf{0}$ is a solution \implies solution set is not empty. If $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$ then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0}$. If $A\mathbf{x} = \mathbf{0}$ then $A(r\mathbf{x}) = r(A\mathbf{x}) = \mathbf{0}$. Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Consider the set L of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

Theorem L is a subspace of V.

Proof: First of all, *L* is not empty. For example, $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$ belongs to *L*.

The set L is closed under addition since

$$(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)+(s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_n\mathbf{v}_n)=$$

= $(r_1+s_1)\mathbf{v}_1+(r_2+s_2)\mathbf{v}_2+\cdots+(r_n+s_n)\mathbf{v}_n.$

The set *L* is closed under scalar multiplication since $t(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n) = (tr_1)\mathbf{v}_1+(tr_2)\mathbf{v}_2+\cdots+(tr_n)\mathbf{v}_n.$ Example. $V = \mathbb{R}^3$.

- The plane z = 0 is a subspace of \mathbb{R}^3 .
- The plane z = 1 is not a subspace of \mathbb{R}^3 .

• The line t(1,1,0), $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 and a subspace of the plane z = 0.

• The line (1,1,1) + t(1,-1,0), $t \in \mathbb{R}$ is not a subspace of \mathbb{R}^3 as it lies in the plane x + y + z = 3, which does not contain **0**.

• In general, a line or a plane in \mathbb{R}^3 is a subspace if and only if it passes through the origin.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- diagonal matrices: b = c = 0
- upper triangular matrices: c = 0
- lower triangular matrices: b = 0
- symmetric matrices $(A^T = A)$: b = c
- anti-symmetric matrices $(A^T = -A)$:

$$a=d=0, \ c=-b$$

- matrices with zero trace: a + d = 0(trace = the sum of diagonal entries)
- matrices with zero determinant, ad bc = 0, do not form a subspace: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Span: implicit definition

Let S be a subset of a vector space V.

Definition. The span of the set S, denoted Span(S), is the smallest subspace of V that contains S. That is,

- Span(S) is a subspace of V;
- for any subspace $W \subset V$ one has $S \subset W \implies \operatorname{Span}(S) \subset W$.

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

• If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

• If S is an infinite set then Span(S) is the set of all linear combinations $r_1\mathbf{u}_1 + r_2\mathbf{u}_2 + \cdots + r_k\mathbf{u}_k$, where $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in S$ and $r_1, r_2, \ldots, r_k \in \mathbb{R}$ $(k \ge 1)$.

• If S is the empty set then $\operatorname{Span}(S) = \{\mathbf{0}\}.$