MATH 304
Linear Algebra
Lecture 12:
Subspaces of vector spaces.
Span.

Vector space

A vector space is a set V equipped with two operations, addition

$$
V \times V \ni(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}+\mathbf{y} \in V
$$

and scalar multiplication

$$
\mathbb{R} \times V \ni(r, \mathbf{x}) \mapsto r \mathbf{x} \in V
$$

that have the following properties:

Properties of addition and scalar multiplication

A1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ for all $\mathbf{a}, \mathbf{b} \in V$.
A2. $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
A3. There exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in V$.
A4. For any $\mathbf{a} \in V$ there exists an element of V, denoted $-\mathbf{a}$, such that $\mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0}$. A5. $r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b}$ for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in V$. A6. $(r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a}$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A7. $(r s) \mathbf{a}=r(s \mathbf{a})$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A8. $1 \mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in V$.

- Associativity of addition implies that a multiple sum $\mathbf{u}_{1}+\mathbf{u}_{2}+\cdots+\mathbf{u}_{k}$ is well defined for any $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in V$.
- Subtraction in V is defined as usual:
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$.
- Addition and scalar multiplication are called linear operations.
Given $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in V$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$,

$$
r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}
$$

is called a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{a} \in V$, the negative $-\mathbf{a}$ is unique.
$\bullet \mathbf{a}+\mathbf{b}=\mathbf{c} \Longleftrightarrow \mathbf{a}=\mathbf{c}-\mathbf{b}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
- $\mathbf{a}+\mathbf{c}=\mathbf{b}+\mathbf{c} \Longleftrightarrow \mathbf{a}=\mathbf{b}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
- $0 \mathbf{a}=\mathbf{0}$ for any $\mathbf{a} \in V$.
- $(-1) \mathbf{a}=-\mathbf{a}$ for any $\mathbf{a} \in V$.

Examples of vector spaces

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}$
- $\{\mathbf{0}\}$: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{1}(\mathbb{R})$: all continuously differentiable functions
$f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$
- \mathcal{P}_{n} : polynomials of degree less than n
\mathcal{P}_{n} is a subspace of \mathcal{P}.

Subspaces of vector spaces

Counterexamples.

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- \mathbb{Q}^{n} : vectors with rational coordinates
\mathbb{Q}^{n} is not a subspace of \mathbb{R}^{n}.
$\sqrt{2}(1,1, \ldots, 1) \notin \mathbb{Q}^{n} \Longrightarrow \mathbb{Q}^{n}$ is not a vector space (scaling is not well defined).
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- P_{n} : polynomials of degree $n(n>0)$
P_{n} is not a subspace of \mathcal{P}.
$-x^{n}+\left(x^{n}+1\right)=1 \notin P_{n} \Longrightarrow P_{n}$ is not a vector space (addition is not well defined).

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations. Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \Longrightarrow \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R} .
\end{gathered}
$$

Proof: "only if" is obvious.
"if" : properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0}=0 \mathbf{x} \in S$. Also, $-\mathbf{x}=(-1) \mathbf{x} \in S$.

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an element of \mathbb{R}^{n}.
Theorem The solution set of the system is a subspace of \mathbb{R}^{n} if and only if all $b_{i}=0$.

Theorem The solution set of a system of linear equations in n variables is a subspace of \mathbb{R}^{n} if and only if all equations are homogeneous.

Proof: "only if" : the zero vector $\mathbf{0}=(0,0, \ldots, 0)$ is a solution only if all equations are homogeneous.
"if": a system of homogeneous linear equations is equivalent to a matrix equation $A \mathbf{x}=\mathbf{0}$.
$A \mathbf{0}=\mathbf{0} \Longrightarrow \mathbf{0}$ is a solution \Longrightarrow solution set is not empty.
If $A \mathbf{x}=\mathbf{0}$ and $A \mathbf{y}=\mathbf{0}$ then $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}$.
If $A \mathbf{x}=\mathbf{0}$ then $A(r \mathbf{x})=r(A \mathbf{x})=\mathbf{0}$.

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$.
Consider the set L of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.

Theorem L is a subspace of V.
Proof: First of all, L is not empty. For example, $\mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{n}$ belongs to L.
The set L is closed under addition since

$$
\begin{aligned}
& \left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)+\left(s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{n} \mathbf{v}_{n}\right)= \\
& \quad=\left(r_{1}+s_{1}\right) \mathbf{v}_{1}+\left(r_{2}+s_{2}\right) \mathbf{v}_{2}+\cdots+\left(r_{n}+s_{n}\right) \mathbf{v}_{n} .
\end{aligned}
$$

The set L is closed under scalar multiplication since

$$
t\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)=\left(t r_{1}\right) \mathbf{v}_{1}+\left(t r_{2}\right) \mathbf{v}_{2}+\cdots+\left(t r_{n}\right) \mathbf{v}_{n}
$$

Example. $\quad V=\mathbb{R}^{3}$.

- The plane $z=0$ is a subspace of \mathbb{R}^{3}.
- The plane $z=1$ is not a subspace of \mathbb{R}^{3}.
- The line $t(1,1,0), t \in \mathbb{R}$ is a subspace of \mathbb{R}^{3} and a subspace of the plane $z=0$.
- The line $(1,1,1)+t(1,-1,0), t \in \mathbb{R}$ is not a subspace of \mathbb{R}^{3} as it lies in the plane $x+y+z=3$, which does not contain $\mathbf{0}$.
- In general, a line or a plane in \mathbb{R}^{3} is a subspace if and only if it passes through the origin.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R}): \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

- diagonal matrices: $b=c=0$
- upper triangular matrices: $c=0$
- lower triangular matrices: $b=0$
- symmetric matrices $\left(A^{T}=A\right): \quad b=c$
- anti-symmetric matrices $\left(A^{T}=-A\right)$:

$$
a=d=0, c=-b
$$

- matrices with zero trace: $a+d=0$
(trace $=$ the sum of diagonal entries)
- matrices with zero determinant, $a d-b c=0$, do not form a subspace: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Span: implicit definition

Let S be a subset of a vector space V.
Definition. The span of the set S, denoted $\operatorname{Span}(S)$, is the smallest subspace of V that contains S. That is,

- $\operatorname{Span}(S)$ is a subspace of V;
- for any subspace $W \subset V$ one has

$$
S \subset W \Longrightarrow \operatorname{span}(S) \subset W
$$

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.
- If S is an infinite set then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}$, where $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in S$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$ $(k \geq 1)$.
- If S is the empty set then $\operatorname{Span}(S)=\{\mathbf{0}\}$.

