MATH 304
Linear Algebra

Lecture 25:
Orthogonal subspaces.



Scalar product in R”

Definition. The scalar product of vectors
x = (x1,%0,...,%,) and y = (y1,¥2,.-.,¥n) IS
Xy =X+ Xy + -+ Xy

Properties of scalar product:

x-x>0, x-x=0onlyif x=0 (positivity)
X-y=y-Xx (symmetry)
(x+y)-z=x-z+y-z (distributive law)
(rx)-y=r(x-y) (homogeneity)

In particular, x - y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Orthogonality

Definition 1. Vectors x,y € R" are said to be
orthogonal (denoted x | y) if [x-y=0.

Definition 2. A vector x € R" is said to be
orthogonal to a nonempty set Y C R” (denoted
xLY)ifx-y=0 forany ye Y.

Definition 3. Nonempty sets X, Y C R" are said
to be orthogonal (denoted X L Y) if x-y=0
forany x€ X and y € Y.



Examples in R3. e Theline x=y=0s
orthogonal to the line y = z = 0.
Indeed, if v=(0,0,z) and w = (x,0,0) then v-w = 0.

e The line x =y =0 is orthogonal to the plane
z=0.
Indeed, if v=(0,0,z) and w = (x,y,0) then v-w =0.

e Theline x =y = 0 is not orthogonal to the
plane z = 1.

The vector v = (0,0, 1) belongs to both the line and the
plane, and v-v=1#0.

e The plane z = 0 is not orthogonal to the plane
y =0.
The vector v =(1,0,0) belongs to both planes and
v-v=1=#0.



Proposition 1 If X, Y € R" are orthogonal sets
then either they are disjoint or X N Y = {0}.

Proof: veXNY = vlv = v-v=0 = v=0.

Proposition 2 Let V be a subspace of R” and S
be a spanning set for V. Then for any x € R”

x1lS = x.1lV.

Proof: Any v € V s represented as v = a;vy + - - - + aVy,
where v; € S and a; ¢ R. If x L S then

X-v=a(x-vy)+--F+ax-v)=0 = xLv.

Example. The vector v = (1,1,1) is orthogonal to
the plane spanned by vectors w; = (2, —3,1) and
wy = (0,1, —1) (because v-w; =v-w, =0).



Orthogonal complement

Definition. Let S C R". The orthogonal
complement of S, denoted S+, is the set of all
vectors x € R” that are orthogonal to S. That s,
S+ is the largest subset of R” orthogonal to S.

Theorem 1 S is a subspace of R
Note that S C (S1)+, hence Span(S) C (S1)*.

Theorem 2 (S+)* = Span(S). In particular, for
any subspace V we have (V4): = V.

Example. Consider a line L ={(x,0,0) | x € R}
and a plane M= {(0,y,z) | y,z € R} in R3.
Then L+ =11 and M+ = L.



Theorem Let V and W be subspaces of R” such
that VN W = {0}. Then dimV +dim W < n.

Sketch of the proof: Let vi,v,, ..., v, be a basis for V. Let
W1, W>, ..., W, be a basis for W.

It can be proved that vectors vi,vs, ..., Vi, Wi, Wo, ... W/
form a linearly independent set in R”. Therefore the number
of vectors in this set, whichis k+/=dimV +dim W,
cannot exceed n.

Corollary Let V and W be subspaces of R” such
that V L W. Then dmV +dim W < n.



Fundamental subspaces

Definition. Given an mxn matrix A, let
N(A) = {x € R" | Ax = 0},
R(A) = {b € R” | b = Ax for some x € R"}.

R(A) is the range of a linear mapping L : R” — R,
L(x) = Ax. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while
R(A) is the column space of A. The row space of
Ais R(AT).

The subspaces N(A), R(AT) C R" and

R(A), N(AT) C R™ are fundamental subspaces
associated to the matrix A.



Theorem N(A) = R(AT)L, N(AT) = R(A)l.
That is, the nullspace of a matrix is the orthogonal
complement of its row space.

Proof: The equality Ax = 0 means that the vector x is
orthogonal to rows of the matrix A. Therefore N(A) = S+,

where S is the set of rows of A. It remains to note that
St = Span(S)l = R(AT)l.

Corollary Let V be a subspace of R". Then
dim V 4+ dim V+ = n.

Proof: Pick a basis vq,...,v, for V. Let A be the kxn
matrix whose rows are vectors vi,...,v,. Then V = R(AT)
and V1 = N(A). Consequently, dim V and dim V* are rank
and nullity of A. Therefore dim V + dim V* equals the
number of columns of A, which is n.



