Linear Algebra Lecture 26:

MATH 304

Lecture 26: Orthogonal projection. Least squares problems.

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be **orthogonal** to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Orthogonal complement

Definition. Let S be a subset of \mathbb{R}^n . The **orthogonal complement** of S, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to S.

Theorem Let V be a subspace of \mathbb{R}^n . Then (i) V^{\perp} is also a subspace of \mathbb{R}^n ; (ii) $V \cap V^{\perp} = \{\mathbf{0}\}$; (iii) dim V + dim $V^{\perp} = n$; (iv) $\mathbb{R}^n = V \oplus V^{\perp}$ (direct sum), which means that any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

In the above expansion, \mathbf{p} is called the **orthogonal projection** of the vector \mathbf{x} onto the subspace V.

Let V be a subspace of \mathbb{R}^n . Let \mathbf{p} be the orthogonal projection of a vector $\mathbf{x} \in \mathbb{R}^n$ onto V.

Theorem $\|\mathbf{x} - \mathbf{v}\| > \|\mathbf{x} - \mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.

Proof: Let $\mathbf{o} = \mathbf{x} - \mathbf{p}$, $\mathbf{o}_1 = \mathbf{x} - \mathbf{v}$, and $\mathbf{v}_1 = \mathbf{p} - \mathbf{v}$. Then $\mathbf{o}_1 = \mathbf{o} + \mathbf{v}_1$, $\mathbf{v}_1 \in V$, and $\mathbf{v}_1 \neq \mathbf{0}$. Since $\mathbf{o} \perp V$, it follows that $\mathbf{o} \cdot \mathbf{v}_1 = 0$. $\|\mathbf{o}_1\|^2 = \mathbf{o}_1 \cdot \mathbf{o}_1 = (\mathbf{o} + \mathbf{v}_1) \cdot (\mathbf{o} + \mathbf{v}_1)$

$$= \mathbf{o} \cdot \mathbf{o} + \mathbf{v}_1 \cdot \mathbf{o} + \mathbf{o} \cdot \mathbf{v}_1 + \mathbf{v}_1 \cdot \mathbf{v}_1$$

= $\mathbf{o} \cdot \mathbf{o} + \mathbf{v}_1 \cdot \mathbf{v}_1 = \|\mathbf{o}\|^2 + \|\mathbf{v}_1\|^2 > \|\mathbf{o}\|^2$.

Thus $\|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V} \|\mathbf{x} - \mathbf{v}\|$ is the **distance** from the vector \mathbf{x} to the subspace V.

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_1=(1,1,0)$ and $\mathbf{v}_2=(0,1,1)$.

(i) Find the orthogonal projection of the vector $\mathbf{x} = (4,0,-1)$ onto the plane Π . (ii) Find the distance from \mathbf{x} to Π .

We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.

We have $\mathbf{p} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ for some $\alpha, \beta \in \mathbb{R}$. Then $\mathbf{o} = \mathbf{x} - \mathbf{p} = \mathbf{x} - \alpha \mathbf{v}_1 - \beta \mathbf{v}_2$.

$$\begin{cases} \mathbf{o} \cdot \mathbf{v}_1 = 0 \\ \mathbf{o} \cdot \mathbf{v}_2 = 0 \end{cases} \iff \begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

$$\mathbf{x} = (4, 0, -1), \quad \mathbf{v}_1 = (1, 1, 0), \quad \mathbf{v}_2 = (0, 1, 1)$$

$$\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

 $\iff \begin{cases} 2\alpha + \beta = 4 \\ \alpha + 2\beta = -1 \end{cases} \iff \begin{cases} \alpha = 3 \\ \beta = -2 \end{cases}$

 $\mathbf{p} = 3\mathbf{v}_1 - 2\mathbf{v}_2 = (3, 1, -2)$

 $\mathbf{o} = \mathbf{x} - \mathbf{p} = (1, -1, 1)$

 $\|{\bf o}\| = \sqrt{3}$

$$\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

$$\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

$$\alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1$$
$$\alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2$$

Overdetermined system of linear equations:

$$\begin{cases} x + 2y = 3 \\ 3x + 2y = 5 \\ x + y = 2.09 \end{cases} \iff \begin{cases} x + 2y = 3 \\ -4y = -4 \\ -y = -0.91 \end{cases}$$

No solution: inconsistent system

Assume that a solution (x_0, y_0) does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of (x_0, y_0) .

One approach is the **least squares fit**. Namely, we look for a pair (x, y) that minimizes the sum $(x + 2y - 3)^2 + (3x + 2y - 5)^2 + (x + y - 2.09)^2$.

Least squares solution

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff A\mathbf{x} = \mathbf{b}$$

For any $\mathbf{x} \in \mathbb{R}^n$ define a **residual** $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$.

The **least squares solution** \mathbf{x} to the system is the one that minimizes $||r(\mathbf{x})||$ (or, equivalently, $||r(\mathbf{x})||^2$).

$$||r(\mathbf{x})||^2 = \sum_{i=1}^m (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$.

Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$ if and only if it is a solution of the associated **normal system** $A^T A \mathbf{x} = A^T \mathbf{b}$.

Proof: $A\mathbf{x}$ is an arbitrary vector in R(A), the column space of A. Hence the length of $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is minimal if $A\mathbf{x}$ is the orthogonal projection of \mathbf{b} onto R(A). That is, if $r(\mathbf{x})$ is orthogonal to R(A).

We know that $R(A)^{\perp} = N(A^{T})$, the nullspace of the transpose matrix. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if

$$A^T r(\hat{\mathbf{x}}) = \mathbf{0} \iff A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \iff A^T A\hat{\mathbf{x}} = A^T \mathbf{b}.$$

Find the least squares solution to

$$\begin{cases} x + 2y = 3\\ 3x + 2y = 5\\ x + y = 2.09 \end{cases}$$

$$\begin{cases} 3x + 2y = 5 \\ x + y = 2.09 \end{cases}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 2.09 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} y \end{pmatrix} \begin{pmatrix} 2.09 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 2.09 \end{pmatrix}$$

$$\begin{pmatrix} 11 & 9 \\ 9 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 20.09 \\ 18.09 \end{pmatrix} \iff \begin{cases} x = 1 \\ y = 1.01 \end{cases}$$

Consider a system of linear equations $A\mathbf{x} = \mathbf{b}$ and the associated normal system $A^T A \mathbf{x} = A^T \mathbf{b}$.

Theorem The normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent. Also, the following conditions are equivalent:

(i) the least squares problem has a unique solution, (ii) the system $A\mathbf{x} = \mathbf{0}$ has only zero solution, (iii) columns of A are linearly independent.

Proof: \mathbf{x} is a solution of the least squares problem if and only if $A\mathbf{x}$ is the orthogonal projection of \mathbf{b} onto R(A). Clearly, such \mathbf{x} exists. If \mathbf{x}_1 and \mathbf{x}_2 are two solutions then $A\mathbf{x}_1 = A\mathbf{x}_2 \iff A(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}$.

Problem. Find the constant function that is the least square fit to the following data

$$f(x) = c \implies \begin{cases} c = 1 \\ c = 0 \\ c = 1 \\ c = 2 \end{cases} \implies \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$(1,1,1,1)egin{pmatrix} 1\ 1\ 1\ 1 \end{pmatrix}(c)=(1,1,1,1)egin{pmatrix} 1\ 0\ 1\ 2 \end{pmatrix}$$

$$c = \frac{1}{4}(1+0+1+2) = 1$$
 (mean arithmetic value)

Find the linear polynomial that is the least square fit to the following data

least square fit to the following data
$$\frac{x \quad \left\| 0 \right\| 1 \mid 2 \mid 3}{f(x) \quad \left\| 1 \right\| 0 \mid 1 \mid 2}$$

$$\int c_1 = 1$$

$$f(x) = c_1 + c_2 x \implies \begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \\ c_1 + 2c_2 = 1 \\ c_1 + 3c_2 = 2 \end{cases} \implies \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} c_1 + 2c_2 - 1 \\ c_1 + 3c_2 = 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 6 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \iff \begin{cases} c_1 = 0.4 \\ c_2 = 0.4 \end{cases}$$