# MATH 304 <br> Linear Algebra 

Lecture 26:
Orthogonal projection.
Least squares problems.

## Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$ ) if $\mathbf{x \cdot y = 0}$.

Definition 2. A vector $\mathrm{x} \in \mathbb{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^{n}$ (denoted $\mathbf{x} \perp Y)$ if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$ ) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

## Orthogonal complement

Definition. Let $S$ be a subset of $\mathbb{R}^{n}$. The orthogonal complement of $S$, denoted $S^{\perp}$, is the set of all vectors $x \in \mathbb{R}^{n}$ that are orthogonal to $S$.

Theorem Let $V$ be a subspace of $\mathbb{R}^{n}$. Then
(i) $V^{\perp}$ is also a subspace of $\mathbb{R}^{n}$;
(ii) $V \cap V^{\perp}=\{\mathbf{0}\}$;
(iii) $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$;
(iv) $\mathbb{R}^{n}=V \oplus V^{\perp}$ (direct sum), which means
that any vector $\mathbf{x} \in \mathbb{R}^{n}$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.
In the above expansion, $\mathbf{p}$ is called the orthogonal projection of the vector $\mathbf{x}$ onto the subspace $V$.

Let $V$ be a subspace of $\mathbb{R}^{n}$. Let $\mathbf{p}$ be the orthogonal projection of a vector $\mathbf{x} \in \mathbb{R}^{n}$ onto $V$.

Theorem $\|\mathbf{x}-\mathbf{v}\|>\|\mathbf{x}-\mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in $V$.
Proof: Let $\mathbf{o}=\mathbf{x}-\mathbf{p}, \mathbf{o}_{1}=\mathbf{x}-\mathbf{v}$, and $\mathbf{v}_{1}=\mathbf{p}-\mathbf{v}$. Then $\mathbf{o}_{1}=\mathbf{o}+\mathbf{v}_{1}, \mathbf{v}_{1} \in V$, and $\mathbf{v}_{1} \neq \mathbf{0}$. Since $\mathbf{o} \perp V$, it follows that $\mathbf{o} \cdot \mathbf{v}_{1}=0$.

$$
\begin{gathered}
\left\|\mathbf{o}_{1}\right\|^{2}=\mathbf{o}_{1} \cdot \mathbf{o}_{1}=\left(\mathbf{o}+\mathbf{v}_{1}\right) \cdot\left(\mathbf{o}+\mathbf{v}_{1}\right) \\
=\mathbf{o} \cdot \mathbf{o}+\mathbf{v}_{1} \cdot \mathbf{o}+\mathbf{o} \cdot \mathbf{v}_{1}+\mathbf{v}_{1} \cdot \mathbf{v}_{1} \\
=\mathbf{o} \cdot \mathbf{o}+\mathbf{v}_{1} \cdot \mathbf{v}_{1}=\|\mathbf{o}\|^{2}+\left\|\mathbf{v}_{1}\right\|^{2}>\|\mathbf{o}\|^{2} .
\end{gathered}
$$

Thus $\|\mathbf{x}-\mathbf{p}\|=\min _{\mathbf{v} \in V}\|\mathbf{x}-\mathbf{v}\|$ is the distance from the vector $\mathbf{x}$ to the subspace $V$.

Problem. Let $\Pi$ be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$.
(i) Find the orthogonal projection of the vector $\mathbf{x}=(4,0,-1)$ onto the plane $\Pi$.
(ii) Find the distance from $x$ to $\Pi$.

We have $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$.
Then the orthogonal projection of $\mathbf{x}$ onto $\Pi$ is $\mathbf{p}$ and the distance from $\mathbf{x}$ to $\Pi$ is $\|\mathbf{0}\|$.
We have $\mathbf{p}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ for some $\alpha, \beta \in \mathbb{R}$.
Then $\mathbf{o}=\mathbf{x}-\mathbf{p}=\mathbf{x}-\alpha \mathbf{v}_{1}-\beta \mathbf{v}_{2}$.
$\left\{\begin{array}{l}\mathbf{o} \cdot \mathbf{v}_{1}=0 \\ \mathbf{o} \cdot \mathbf{v}_{2}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\ \alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}\end{array}\right.\right.$

$$
\mathbf{x}=(4,0,-1), \quad \mathbf{v}_{1}=(1,1,0), \quad \mathbf{v}_{2}=(0,1,1)
$$

$$
\left\{\begin{array}{l}
\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\
\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}
\end{array}\right.
$$

$$
\Longleftrightarrow\left\{\begin{array} { l } 
{ 2 \alpha + \beta = 4 } \\
{ \alpha + 2 \beta = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\alpha=3 \\
\beta=-2
\end{array}\right.\right.
$$

$$
\mathbf{p}=3 \mathbf{v}_{1}-2 \mathbf{v}_{2}=(3,1,-2)
$$

$$
\mathbf{o}=\mathbf{x}-\mathbf{p}=(1,-1,1)
$$

$$
\|\mathbf{o}\|=\sqrt{3}
$$

Overdetermined system of linear equations:
$\left\{\begin{array}{l}x+2 y=3 \\ 3 x+2 y=5 \\ x+y=2.09\end{array}\right.$

$$
\Longleftrightarrow\left\{\begin{array}{l}
x+2 y=3 \\
-4 y=-4 \\
-y=-0.91
\end{array}\right.
$$

No solution: inconsistent system
Assume that a solution $\left(x_{0}, y_{0}\right)$ does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.
Problem. Find a good approximation of $\left(x_{0}, y_{0}\right)$.
One approach is the least squares fit. Namely, we look for a pair $(x, y)$ that minimizes the sum
$(x+2 y-3)^{2}+(3 x+2 y-5)^{2}+(x+y-2.09)^{2}$.

## Least squares solution

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

For any $\mathbf{x} \in \mathbb{R}^{n}$ define a residual $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$.
The least squares solution $\mathbf{x}$ to the system is the one that minimizes $\|r(\mathbf{x})\|$ (or, equivalently, $\|r(\mathbf{x})\|^{2}$ ).

$$
\|r(\mathbf{x})\|^{2}=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
$$

Let $A$ be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^{m}$.
Theorem $A$ vector $\hat{x}$ is a least squares solution of the system $A \mathbf{x}=\mathbf{b}$ if and only if it is a solution of the associated normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

Proof: $A \mathbf{x}$ is an arbitrary vector in $R(A)$, the column space of $A$. Hence the length of $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is minimal if $A \mathbf{x}$ is the orthogonal projection of $\mathbf{b}$ onto $R(A)$. That is, if $r(\mathbf{x})$ is orthogonal to $R(A)$.
We know that $R(A)^{\perp}=N\left(A^{T}\right)$, the nullspace of the transpose matrix. Thus $\hat{x}$ is a least squares solution if and only if

$$
A^{T} r(\hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

Problem. Find the least squares solution to
$\left\{\begin{array}{l}x+2 y=3 \\ 3 x+2 y=5 \\ x+y=2.09\end{array}\right.$
$\left(\begin{array}{ll}1 & 2 \\ 3 & 2 \\ 1 & 1\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}3 \\ 5 \\ 2.09\end{array}\right)$
$\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 2 \\ 1 & 1\end{array}\right)\binom{x}{y}=\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{c}3 \\ 5 \\ 2.09\end{array}\right)$
$\left(\begin{array}{cc}11 & 9 \\ 9 & 9\end{array}\right)\binom{x}{y}=\binom{20.09}{18.09} \Longleftrightarrow\left\{\begin{array}{l}x=1 \\ y=1.01\end{array}\right.$

Consider a system of linear equations $A \mathbf{x}=\mathbf{b}$ and the associated normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
Theorem The normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is always consistent. Also, the following conditions are equivalent:
(i) the least squares problem has a unique solution,
(ii) the system $A \mathbf{x}=\mathbf{0}$ has only zero solution,
(iii) columns of $A$ are linearly independent.

Proof: $\mathbf{x}$ is a solution of the least squares problem if and only if $A \mathbf{x}$ is the orthogonal projection of $\mathbf{b}$ onto $R(A)$. Clearly, such $\mathbf{x}$ exists. If $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are two solutions then $A \mathbf{x}_{1}=A \mathbf{x}_{2}$
$\Longleftrightarrow A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=\mathbf{0}$.

Problem. Find the constant function that is the least square fit to the following data

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 0 | 1 | 2 |

$f(x)=c \Longrightarrow\left\{\begin{array}{l}c=1 \\ c=0 \\ c=1 \\ c=2\end{array} \Longrightarrow\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)(c)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)\right.$
$(1,1,1,1)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)(c)=(1,1,1,1)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)$
$c=\frac{1}{4}(1+0+1+2)=1 \quad$ (mean arithmetic value)

Problem. Find the linear polynomial that is the least square fit to the following data

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 0 | 1 | 2 |

$$
f(x)=c_{1}+c_{2} x \Longrightarrow\left\{\begin{array}{l}
c_{1}=1 \\
c_{1}+c_{2}=0 \\
c_{1}+2 c_{2}=1 \\
c_{1}+3 c_{2}=2
\end{array} \Longrightarrow\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right)\right.
$$

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right)
$$

$\left(\begin{array}{cc}4 & 6 \\ 6 & 14\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{4}{8} \Longleftrightarrow\left\{\begin{array}{l}c_{1}=0.4 \\ c_{2}=0.4\end{array}\right.$

