Lecture 28:

MATH 304

Linear Algebra

Inner product spaces.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \geq 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$.

•
$$\|\mathbf{x}\|_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{1/p}, \quad p \ge 1.$$

In particular, $\|\mathbf{x}\|_2 = |\mathbf{x}|$.

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}$.

- Examples. $V = C[a, b], T : [a, b] \rightarrow \mathbb{I}$
 - $\bullet \quad \|f\|_{\infty} = \max_{a \le x \le b} |f(x)|.$
- $||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

$$\bullet \ \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

 $ullet \langle \mathbf{x}, \mathbf{y}
angle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n$, where $d_1, d_2, \ldots, d_n > 0$.

Example. $V = \mathcal{P}_n$, polynomials of degree < n.

• $\langle p, q \rangle = p(x_1)q(x_1) + p(x_2)q(x_2) + \cdots + p(x_n)q(x_n)$, where x_1, x_2, \dots, x_n are distinct points on \mathbb{R} .

We have $\langle p, p \rangle = 0 \implies p = 0$ since a nonzero polynomial of degree less than n cannot have n roots.

Examples. V = C[a, b].

•
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$
.

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

w is called the **weight** function.

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$
 for all $\mathbf{x}, \mathbf{y} \in V$.

Proof: For any $t \in \mathbb{R}$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle$.

The right-hand side is a quadratic polynomial in t (provided that $\mathbf{y} \neq \mathbf{0}$). Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$ for all t, the discriminant D is nonpositive. But $D = 4\langle \mathbf{x}, \mathbf{y} \rangle^2 - 4\langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$.

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Proof: Positivity is obvious. Homogeneity:

$$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + |\langle \mathbf{x}, \mathbf{y} \rangle| + |\langle \mathbf{y}, \mathbf{x} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$< ||\mathbf{x}||^{2} + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^{2} = (||\mathbf{x}|| + ||\mathbf{y}||)^{2}.$$

Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$.

is the norm induced by the dot product

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x) dx$.

Angle

Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the *angle* between nonzero vectors in any vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Then
$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y}).$$

In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Problem. Find the angle between functions $f_1(x) = x$ and $f_2(x) = x^2$ in the inner space C[0,1] with the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx.$$

$$\langle f_1, f_2 \rangle = \int_0^1 x \cdot x^2 dx = \frac{1}{4}$$
,

$$\langle I_1, I_2 \rangle = \int_0^1 x \cdot x \, dx =$$

$$\langle f, f_1 \rangle = \int_0^1 x^2 \, dx = \frac{1}{2}$$

$$\langle f_1, f_1 \rangle = \int_0^1 x^2 dx = \frac{1}{3}, \quad \langle f_2, f_2 \rangle = \int_0^1 (x^2)^2 dx = \frac{1}{5}.$$

$$\cos \angle (f_1, f_2) = \frac{\langle f_1, f_2 \rangle}{\|f_1\| \|f_2\|} = \frac{1/4}{\sqrt{1/3} \sqrt{1/5}} = \frac{\sqrt{15}}{4}$$

$$\sin \angle (f_1, f_2) = \sqrt{1 - \cos^2 \angle (f_1, f_2)} = 1/4$$

$$\angle (f_1, f_2) = \arcsin \frac{1}{4}$$

Pythagorean Theorem:

$$\mathbf{x} \perp \mathbf{y} \implies \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

= $\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
= $\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

Parallelogram Identity:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

$$\begin{aligned} &\textit{Proof:} \quad \|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle. \\ &\text{Similarly,} \quad \|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle. \\ &\text{Then} \quad \|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2. \end{aligned}$$

Example. Norms on \mathbb{R}^n , $n \geq 2$:

- $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|),$
- $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, p \ge 1.$

Theorem The norms $\|\mathbf{x}\|_{\infty}$ and $\|\mathbf{x}\|_{p}$, $p \neq 2$ do not satisfy the Parallelogram Identity. Hence they are not induced by any inner product on \mathbb{R}^{n} .

Proof: A counterexample to the Parallelogram Identity is provided by vectors $\mathbf{e}_1 = (1,0,0,\ldots,0)$ and $\mathbf{e}_2 = (0,1,0,\ldots,0)$. $\|\mathbf{e}_1\|_{\infty} = \|\mathbf{e}_2\|_{\infty} = 1$, $\|\mathbf{e}_1\|_{p} = \|\mathbf{e}_2\|_{p} = 1$ for any $p \ge 1$.

 $\|\mathbf{e}_1 + \mathbf{e}_2\|_{\infty} = \|\mathbf{e}_1 - \mathbf{e}_2\|_{\infty} = 1,$ $\|\mathbf{e}_1 + \mathbf{e}_2\|_p = \|\mathbf{e}_1 - \mathbf{e}_2\|_p = 2^{1/p}$ for any p > 1.

Thus $2\|\mathbf{e}_1\|_{\infty}^2 + 2\|\mathbf{e}_2\|_{\infty}^2 = 2\|\mathbf{e}_1\|_p^2 + 2\|\mathbf{e}_2\|_p^2 = 4$.

On the other hand, $\|\mathbf{e}_1 + \mathbf{e}_2\|_{\infty}^2 + \|\mathbf{e}_1 - \mathbf{e}_2\|_{\infty}^2 = 2 \neq 4$ and $\|\mathbf{e}_1 + \mathbf{e}_2\|_p^2 + \|\mathbf{e}_1 - \mathbf{e}_2\|_p^2 = 2(2^{1/p})^2 = 2^{1+2/p} \neq 4$ unless p = 2.