
MATH 304–503/504 Fall 2008

Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Let M2,2(R) denote the vector space of 2 × 2 matrices with real
entries. Consider a linear operator L : M2,2(R) → M2,2(R) given by

L

(

x y

z w

)

=

(

x y

z w

) (

1 2
3 4

)

.

Find the matrix of the operator L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Let ML denote the desired matrix. By definition, ML is a 4 × 4 matrix whose columns are
coordinates of the matrices L(E1), L(E2), L(E3), L(E4) with respect to the basis E1, E2, E3, E4. We
have that

L(E1) =

(

1 0
0 0

) (

1 2
3 4

)

=

(

1 2
0 0

)

= 1E1 + 2E2 + 0E3 + 0E4,

L(E2) =

(

0 1
0 0

) (

1 2
3 4

)

=

(

3 4
0 0

)

= 3E1 + 4E2 + 0E3 + 0E4,

L(E3) =

(

0 0
1 0

) (

1 2
3 4

)

=

(

0 0
1 2

)

= 0E1 + 0E2 + 1E3 + 2E4,

L(E4) =

(

0 0
0 1

) (

1 2
3 4

)

=

(

0 0
3 4

)

= 0E1 + 0E2 + 3E3 + 4E4.

It follows that

ML =









1 3 0 0
2 4 0 0
0 0 1 3
0 0 2 4









.

Problem 2 (30 pts.) Let V be a subspace of R
4 spanned by the vectors x1 = (1, 1, 1, 1)

and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .

First we apply the Gram-Schmidt orthogonalization process to vectors x1,x2 and obtain an or-
thogonal basis v1,v2 for the subspace V :

v1 = x1 = (1, 1, 1, 1), v2 = x2 −
x2 · v1

v1 · v1

v1 = (1, 0, 3, 0) − 4

4
(1, 1, 1, 1) = (0,−1, 2,−1).

Then we normalize vectors v1,v2 to obtain an orthonormal basis w1,w2 for V :

w1 =
v1

‖v1‖
=

1

2
v1 =

1

2
(1, 1, 1, 1), w2 =

v2

‖v2‖
=

1√
6
v2 =

1√
6
(0,−1, 2,−1).
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(ii) Find an orthonormal basis for the orthogonal complement V ⊥.

Since the subspace V is spanned by vectors (1, 1, 1, 1) and (1, 0, 3, 0), it is the row space of the
matrix

A =

(

1 1 1 1
1 0 3 0

)

.

Then the orthogonal complement V ⊥ is the nullspace of A. To find the nullspace, we convert the
matrix A to reduced row echelon form:

(

1 1 1 1
1 0 3 0

)

→
(

1 0 3 0
1 1 1 1

)

→
(

1 0 3 0
0 1 −2 1

)

.

Hence a vector (x1, x2, x3, x4) ∈ R
4 belongs to V ⊥ if and only if

{

x1 + 3x3 = 0
x2 − 2x3 + x4 = 0

⇐⇒
{

x1 = −3x3

x2 = 2x3 − x4

The general solution of the system is (x1, x2, x3, x4) = (−3t, 2t− s, t, s) = t(−3, 2, 1, 0) + s(0,−1, 0, 1),
where t, s ∈ R. It follows that V ⊥ is spanned by vectors x3 = (0,−1, 0, 1) and x4 = (−3, 2, 1, 0). It
remains to orthogonalize and normalize this basis for V ⊥:

v3 = x3 = (0,−1, 0, 1), v4 = x4 −
x4 · v3

v3 · v3

v3 = (−3, 2, 1, 0) − −2

2
(0,−1, 0, 1) = (−3, 1, 1, 1),

w3 =
v3

‖v3‖
=

1√
2
(0,−1, 0, 1), w4 =

v4

‖v4‖
=

1

2
√

3
v4 =

1

2
√

3
(−3, 1, 1, 1).

Thus the vectors w3 = 1√
2
(0,−1, 0, 1) and w4 = 1

2
√

3
(−3, 1, 1, 1) form an orthonormal basis for V ⊥.

Alternative solution: Suppose that an orthonormal basis w1,w2 for the subspace V has been
extended to an orthonormal basis w1,w2,w3,w4 for R

4. Then the vectors w3,w4 form an orthonormal
basis for the orthogonal complement V ⊥.

We know that vectors v1 = (1, 1, 1, 1) and v2 = (0,−1, 2,−1) form an orthogonal basis for V . This
basis can be extended to a basis for R

4 by adding two vectors from the standard basis. For example,
we can add vectors e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1). The vectors v1,v2, e3, e4 do form a basis for
R

4 since the matrix whose rows are these vectors is nonsingular:
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 −1 2 −1
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= −1 6= 0.

To orthogonalize the basis v1,v2, e3, e4, we apply the Gram-Schmidt process (note that the vectors
v1 and v2 are already orthogonal):

v3 = e3 −
e3 · v1

v1 · v1

v1 −
e3 · v2

v2 · v2

v2 = (0, 0, 1, 0) − 1

4
(1, 1, 1, 1) − 2

6
(0,−1, 2,−1) =

1

12
(−3, 1, 1, 1),

v4 = e4 −
e4 · v1

v1 · v1

v1 −
e4 · v2

v2 · v2

v2 −
e4 · v3

v3 · v3

v3 =

= (0, 0, 0, 1) − 1

4
(1, 1, 1, 1) − −1

6
(0,−1, 2,−1) − 1/12

1/12
· 1

12
(−3, 1, 1, 1) =

1

2
(0,−1, 0, 1).

It remains to normalize vectors v1,v2,v3,v4:

w1 =
v1

‖v1‖
=

1

2
(1, 1, 1, 1), w2 =

v2

‖v2‖
=

1√
6
(0,−1, 2,−1),
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w3 =
v3

‖v3‖
=

√
12v3 =

1

2
√

3
(−3, 1, 1, 1), w4 =

v4

‖v4‖
=

√
2v4 =

1√
2
(0,−1, 0, 1).

We have obtained an orthonormal basis w1,w2,w3,w4 for R
4 that extends an orthonormal basis

w1,w2 for the subspace V . It follows that w3 = 1

2
√

3
(−3, 1, 1, 1), w4 = 1√

2
(0,−1, 0, 1) is an orthonormal

basis for V ⊥.

Problem 3 (30 pts.) Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation det(A − λI) = 0. We obtain that

det(A − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 2 0
1 1 − λ 1
0 2 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 − 2(1 − λ) − 2(1 − λ)

= (1 − λ)
(

(1 − λ)2 − 4
)

= (1 − λ)
(

(1 − λ) − 2
)(

(1 − λ) + 2
)

= −(λ − 1)(λ + 1)(λ − 3).

Hence the matrix A has three eigenvalues: −1, 1, and 3.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x, y, z) of A associated with an eigenvalue λ is a nonzero solution of the vector
equation (A − λI)v = 0. To solve the equation, we apply row reduction to the matrix A − λI.

First consider the case λ = −1. The row reduction yields

A + I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2



 →





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(A + I)v = 0 ⇐⇒





1 0 −1
0 1 1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x − z = 0,
y + z = 0.

The general solution is x = t, y = −t, z = t, where t ∈ R. In particular, v1 = (1,−1, 1) is an
eigenvector of A associated with the eigenvalue −1.

Secondly, consider the case λ = 1. The row reduction yields

A − I =





0 2 0
1 0 1
0 2 0



 →





1 0 1
0 2 0
0 2 0



 →





1 0 1
0 1 0
0 2 0



 →





1 0 1
0 1 0
0 0 0



 .

Hence

(A − I)v = 0 ⇐⇒





1 0 1
0 1 0
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x + z = 0,
y = 0.

The general solution is x = −t, y = 0, z = t, where t ∈ R. In particular, v2 = (−1, 0, 1) is an
eigenvector of A associated with the eigenvalue 1.
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Finally, consider the case λ = 3. The row reduction yields

A − 3I =





−2 2 0
1 −2 1
0 2 −2



 →





1 −1 0
1 −2 1
0 2 −2



 →





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(A − 3I)v = 0 ⇐⇒





1 0 −1
0 1 −1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x − z = 0,
y − z = 0.

The general solution is x = t, y = t, z = t, where t ∈ R. In particular, v3 = (1, 1, 1) is an eigenvector
of A associated with the eigenvalue 3.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R
3 formed by its eigenvectors. Namely,

the vectors v1 = (1,−1, 1), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix A
belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that
v1,v2,v3 is a basis for R

3.
Alternatively, the existence of a basis for R

3 consisting of eigenvectors of A already follows from
the fact that the matrix A has three distinct eigenvalues.

(iv) Find all eigenvalues of the matrix A2.

Since A has eigenvalues −1, 1, and 3, it is similar to the diagonal matrix

B =





−1 0 0
0 1 0
0 0 3



 .

Namely, A = UBU−1, where U is the matrix whose columns are vectors v1,v2,v3:

U =





1 −1 1
−1 0 1

1 1 1



 .

Then A2 = UBU−1UBU−1 = UB2U−1, that is, the matrix A2 is similar to the diagonal matrix

B2 =





1 0 0
0 1 0
0 0 9



 .

Similar matrices have the same characteristic polynomial, hence they have the same eigenvalues. Thus
the eigenvalues of A2 are the same as the eigenvalues of B2: 1 and 9.
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Bonus Problem 4 (20 pts.) Find a linear polynomial which is the best least squares fit
to the following data:

x −2 −1 0 1 2
f(x) −3 −2 1 2 5

We are looking for a function f(x) = c1 + c2x, where c1, c2 are unknown coefficients. The data of
the problem give rise to an overdetermined system of linear equations in variables c1 and c2:























c1 − 2c2 = −3,
c1 − c2 = −2,
c1 = 1,
c1 + c2 = 2,
c1 + 2c2 = 5.

This system is inconsistent. We can represent it as a matrix equation Ac = y, where

A =













1 −2
1 −1
1 0
1 1
1 2













, c =

(

c1

c2

)

, y =













−3
−2

1
2
5













.

The least squares solution c of the above system is a solution of the system AT Ac = ATy:

(

1 1 1 1 1
−2 −1 0 1 2

)













1 −2
1 −1
1 0
1 1
1 2













(

c1

c2

)

=

(

1 1 1 1 1
−2 −1 0 1 2

)













−3
−2

1
2
5













⇐⇒
(

5 0
0 10

)(

c1

c2

)

=

(

3
20

)

⇐⇒
{

c1 = 3/5
c2 = 2

Thus the function f(x) = 3

5
+2x is the best least squares fit to the above data among linear polynomials.
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Bonus Problem 5 (20 pts.) Let L : V → W be a linear mapping of a finite-dimensional
vector space V to a vector space W . Show that

dim Range(L) + dim ker(L) = dim V.

The kernel ker(L) is a subspace of V . Since the vector space V is finite-dimensional, so is ker(L).
Take a basis v1,v2, . . . ,vk for the subspace ker(L), then extend it to a basis v1, . . . ,vk,u1,u2, . . . ,um

for the entire space V . We are going to prove that vectors L(u1), L(u2), . . . , L(um) form a basis for
the range L(V ). Then dim Range(L) = m, dim ker(L) = k, and dimV = k + m.

Spanning: Any vector w ∈ Range(L) is represented as w = L(v), where v ∈ V . Then

v = α1v1 + α2v2 + · · · + αkvk + β1u1 + β2u2 + · · · + βmum

for some αi, βj ∈ R. It follows that

w = L(v) = α1L(v1) + · · · + αkL(vk) + β1L(u1) + · · · + βmL(um) = β1L(u1) + · · · + βmL(um)

(L(vi) = 0 since vi ∈ ker(L)). Thus Range(L) is spanned by the vectors L(u1), L(u2), . . . , L(um).
Linear independence: Suppose that t1L(u1) + t2L(u2) + · · · + tmL(um) = 0 for some ti ∈ R. Let

u = t1u1 + t2u2 + · · · + tmum. Since

L(u) = t1L(u1) + t2L(u2) + · · · + tmL(um) = 0,

the vector u belongs to the kernel of L. Therefore u = s1v1 + s2v2 + · · · + skvk for some sj ∈ R. It
follows that

t1u1 + t2u2 + · · · + tmum − s1v1 − s2v2 − · · · − skvk = u − u = 0.

Linear independence of vectors v1, . . . ,vk,u1, . . . ,um implies that t1 = t2 = · · · = tm = 0 (as well as
s1 = s2 = · · · = sk = 0). Thus the vectors L(u1), L(u2), . . . , L(um) are linearly independent.
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