MATH 304-503/504 Fall 2008

Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Let Mjy2(R) denote the vector space of 2 X 2 matrices with real
entries. Consider a linear operator L : Ms(R) — M o(R) given by

(T y\_(* Y 1 2
z w) \z w/\3 4)°
Find the matrix of the operator L with respect to the basis

10 0 1 00 00
me(on) me(oo) mo(o) m- ()

Let M;j denote the desired matrix. By definition, M is a 4 X 4 matrix whose columns are
coordinates of the matrices L(E1), L(F2), L(E3), L(E4) with respect to the basis F1, Eo, E3, E4. We

have that
1 0\ /1 2 1 2
L(El)_<0 0> (3 4)_(0 0)—1E1+2E2+0E3+0E4,
0 1\ /1 2 3 4
L(EQ)_(O o) <3 4>_<0 0)_3E1+4E2+0E3+0E4,
0 0\ /1 2 0 0
L(Eg)_<1 0> <3 4>_<1 2>—0E1+0E2+1E3+2E4,
0 0\ /1 2 0 0
L(E4)—<O 1> <3 4)_<3 4>—0E1+0E2+3E3+4E4.
It follows that
1 300
2 4 0 0
Mu=1¢ o 1 3
00 2 4

Problem 2 (30 pts.) Let V be a subspace of R* spanned by the vectors x; = (1,1,1,1)
and x5 = (1,0,3,0).

(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors xj,x9 and obtain an or-
thogonal basis v, vy for the subspace V:

X2 V1

4
vi=x1=(1,1,1,1), vo=x9— vi=(1,0,3,0)~ (1,1,1,1) = (0,~1,2,~1).

Vi-Vi
Then we normalize vectors vi, vo to obtain an orthonormal basis w1, wy for V:

V1 1 1 Vo 1

Vlz—(l,l,l,l), Wgzm:%

Wl = —_——= -
vl 2 2

vy (0,-1,2,—1).

_ 1
V6



(ii) Find an orthonormal basis for the orthogonal complement V.

Since the subspace V is spanned by vectors (1,1,1,1) and (1,0,3,0), it is the row space of the

matrix
1 1 11
A= <1 0 3 0> '
Then the orthogonal complement V- is the nullspace of A. To find the nullspace, we convert the
matrix A to reduced row echelon form:

1 1 1 1 . 1 0 3 0 . 1 0 3 0
1 0 3 0 1 1 11 01 -2 1/°
Hence a vector (21,2, 23, 24) € R* belongs to V- if and only if

1 +3x3=0 1 = —313
To—2x3+ x4 =0 To = 23 — T4

The general solution of the system is (z1, z2, x3,z4) = (—3t,2t — s,t,s) = t(—3,2,1,0) + s(0,—1,0, 1),
where t,s € R. It follows that V= is spanned by vectors x3 = (0, —1,0,1) and x4 = (—3,2,1,0). It
remains to orthogonalize and normalize this basis for V=

: 2
V3 = X3 = (07_1a071)7 V4 =Xy — V3:(_372>170)_7(07_17071) = (_3’1a1a1)7

V3 1 V4 1 1
TR _(07_170’ 1)’ Wy =7 = _—=V4= —(—3, 1,1, 1)‘
Ivsl - v2 [vall  2v/3 2V/3

Thus the vectors wg = %(O, —1,0,1) and wy = ﬁ(—?), 1,1,1) form an orthonormal basis for V.

w3

Alternative solution: Suppose that an orthonormal basis wi, ws for the subspace V' has been
extended to an orthonormal basis w1, wa, w3, wy for R%. Then the vectors ws, w4 form an orthonormal
basis for the orthogonal complement V.

We know that vectors vi = (1,1,1,1) and vy = (0, —1,2, —1) form an orthogonal basis for V. This
basis can be extended to a basis for R* by adding two vectors from the standard basis. For example,
we can add vectors e3 = (0,0, 1,0) and e4 = (0,0,0,1). The vectors vi,vs,e3,es do form a basis for
R* since the matrix whose rows are these vectors is nonsingular:

1 11 1
0 -1 2 -1
0 01 =170
0 00 1

To orthogonalize the basis vi,vs,es, e4, we apply the Gram-Schmidt process (note that the vectors
vy and vy are already orthogonal):

€3 Vi €3 - Vo 1 2 1
=e3 — — =(0,0,1,0) — —(1,1,1,1) — =(0,—-1,2,—-1) = —(-3,1,1,1
V3 e3 Vl'V]_V1 V2'V2V2 (7 5 Ly ) 4(7 s Ly ) 6(7 PR ) 12( y Ly 4y )7
€4 Vi €4V €4 V3
V4 = €4 — V1 — Vo — =
Vi1 -Vi V9 - V9 V3 -V3
1 -1 1/12 1 1
= 1)—--(,1,1,1) - —(0,-1,2,-1) - — - —(-3,1,1,1) = =(0,—1,0,1).
(070707 ) 4() y Ly ) 6 (07 ) &y ) 1/12 12( 3) y Ly ) 2(07 707 )
It remains to normalize vectors vy, vo, v, vy:
1 1
W1 = L = _(171a 1a ]-)7 W2 = & = (07_]->2’_1),

[val 2 Ivall — V6



V3 1 V4 1
wy= 3 —V12vs= ——(=3,1,1,1), wi= 4 —2vs=—-(0,-1,0,1).
Vsl 23\ ) Tval Noh )

We have obtained an orthonormal basis wi, wa, ws, wy for R? that extends an orthonormal basis
w1, wo for the subspace V. It follows that wg = 2%(—3, 1,1,1), wy = %(0, —1,0,1) is an orthonormal
basis for V.

1
Problem 3 (30 pts.) Let A= |1
0

N = DN
— = O

(i) Find all eigenvalues of the matrix A.
The eigenvalues of A are roots of the characteristic equation det(A — AI) = 0. We obtain that

1-X 2 0
det(A—X)=| 1 1-X 1 |=@1-=X>=2(1-X)—-2(1-2))
0 21—\
=(1=-N(1T=2)?=49)=1-0)(A-N=-2)(1-N)+2) =—A-DA+1)(A-3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.

(i) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y, z) of A associated with an eigenvalue \ is a nonzero solution of the vector
equation (A — AI)v = 0. To solve the equation, we apply row reduction to the matrix A — A\I.
First consider the case A = —1. The row reduction yields

Hence
1 0 —1 x 0 v —
(A+IH)v=0 <= 01 1 y|=10 = { +z: ’
00 o0/\z 0 yre=
The general solution is ¢ = ¢, y = —t, z = t, where ¢t € R. In particular, vi = (1,—1,1) is an
eigenvector of A associated with the eigenvalue —1.
Secondly, consider the case A = 1. The row reduction yields
0 20 1 0 1 1 0 1 1 0 1
A-I=11 0 1}|—-10 2 0|—10 1 O0}]—11010
0 20 0 20 0 20 0 00
Hence
1 01 T 0 et 2= 0
(A-D)v=0 <+ 01 0]ly]=10 = { —O_ ’
000/ \z 0 v=
The general solution is © = —t, y = 0, z = ¢, where t € R. In particular, vo = (—1,0,1) is an

eigenvector of A associated with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

2 2 0 1 -1 0 1 -1 0
A-3r=[ 1 =2 1|1 =2 1]l=10 -1 1
0 2 -2 0 2 -2 0 2 -2
1 -1 0 1 -1 0 10 -1
1o 1 -1 =0 1 —1]=(01 -1
0 2 -2 0 0 0 00 0
Hence
1 0 -1 T 0
(A-3Iwv=0 < [0 1 -1]|[y]=(0] = {:E—z:(),
00 o0/\:z 0 y-z=0

The general solution is x = ¢, y = t, z = t, where t € R. In particular, v3 = (1,1,1) is an eigenvector
of A associated with the eigenvalue 3.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R? formed by its eigenvectors. Namely,
the vectors vi = (1,—1,1), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix A
belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that
V1, Vo, Vs is a basis for R3.

Alternatively, the existence of a basis for R3 consisting of eigenvectors of A already follows from
the fact that the matrix A has three distinct eigenvalues.

(iv) Find all eigenvalues of the matrix A2

Since A has eigenvalues —1, 1, and 3, it is similar to the diagonal matrix
-1 0 0
B = 010
00 3
Namely, A = UBU !, where U is the matrix whose columns are vectors vq, va, Va:
1 -1 1
U=|-1 01
1 11
Then A2 = UBU'UBU~! = UB?U~!, that is, the matrix A? is similar to the diagonal matrix
100
B*={0 1 0
009

Similar matrices have the same characteristic polynomial, hence they have the same eigenvalues. Thus
the eigenvalues of A? are the same as the eigenvalues of B?: 1 and 9.



Bonus Problem 4 (20 pts.) Find a linear polynomial which is the best least squares fit
to the following data:
v | =2 -1][0]1]2
)| -3]-2[1]2]5

~~

We are looking for a function f(x) = ¢; + cax, where c¢1, co are unknown coefficients. The data of
the problem give rise to an overdetermined system of linear equations in variables ¢; and cs:

Cc1 — 202 = —3,
€1 —cyg = —2,
01:1,
c1+co =2,

c1+ 2cog = 5.

This system is inconsistent. We can represent it as a matrix equation Ac =y, where

1 -2 -3
1 -1 —9
A=|1 o], c:<cl>, y=| 1
1 1 = 2
1 2 5

1 -2 -3
<1 1111)1_(1)(@)_(1 1111)‘?
-2 -10 1 2), J|\e -2 -1 0 1 2 5
12 5

— 5 0 C1 . 3 — Ccl = 3 / 5
0 10 )\ 20 cog =2
Thus the function f(x) = %—1—23: is the best least squares fit to the above data among linear polynomials.

A




Bonus Problem 5 (20 pts.) Let L:V — W be a linear mapping of a finite-dimensional
vector space V' to a vector space W. Show that

dim Range(L) + dimker(L) = dim V.

The kernel ker(L) is a subspace of V. Since the vector space V is finite-dimensional, so is ker(L).
Take a basis vy, va, ..., vy for the subspace ker(L), then extend it to a basis vi,..., Vg, ug, Uz, ..., Uy
for the entire space V. We are going to prove that vectors L(ui), L(uz), ..., L(u,,) form a basis for
the range L(V'). Then dim Range(L) = m, dimker(L) =k, and dimV = k 4+ m.

Spanning: Any vector w € Range(L) is represented as w = L(v), where v € V. Then

v=amvi+agve+ -+ v+ Siug + fauz + -+ Buy,
for some «;, B; € R. It follows that
w = L(v) =a1L(vi) + -+ apL(vy) + 51 L(ur) + - + BnL(am) = frL(wr) + -+ - + B L(wm)

(L(v;) = 0 since v; € ker(L)). Thus Range(L) is spanned by the vectors L(uy), L(ug), ..., L(uy,).
Linear independence: Suppose that t1L(uy) + taL(uz) + - - + t,, L(u,,) = 0 for some t; € R. Let
u=+tiu; +toug + -+ t,pW,,. Since

L(u) = tlL(ul) + tgL(ug) + -+ tmL(um) =0,

the vector u belongs to the kernel of L. Therefore u = s1vy + savo + - - 4 s vy, for some s; € R. It
follows that

tiug +toug + - + Uy, — 81V — S2Vy — - —spvp =u—u = 0.
Linear independence of vectors vy, ..., Vg, uy,..., U, implies that t; =ty =--- =, = 0 (as well as
s1 =83 =-+- =8 =0). Thus the vectors L(u;), L(uz), ..., L(u,,) are linearly independent.



