Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L : \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.
$$

Find the matrix of the operator L with respect to the basis

$$
E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
$$

Let M_L denote the desired matrix. By definition, M_L is a 4×4 matrix whose columns are coordinates of the matrices $L(E_1), L(E_2), L(E_3), L(E_4)$ with respect to the basis E_1, E_2, E_3, E_4 . We have that

$$
L(E_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 1E_1 + 2E_2 + 0E_3 + 0E_4,
$$

\n
$$
L(E_2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} = 3E_1 + 4E_2 + 0E_3 + 0E_4,
$$

\n
$$
L(E_3) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix} = 0E_1 + 0E_2 + 1E_3 + 2E_4,
$$

\n
$$
L(E_4) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 3 & 4 \end{pmatrix} = 0E_1 + 0E_2 + 3E_3 + 4E_4.
$$

It follows that

$$
M_L = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \end{pmatrix}.
$$

Problem 2 (30 pts.) Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0).$

 (i) Find an orthonormal basis for V .

First we apply the Gram-Schmidt orthogonalization process to vectors x_1, x_2 and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2$ for the subspace V:

$$
\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 1, 1), \qquad \mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1).
$$

Then we normalize vectors $\mathbf{v}_1, \mathbf{v}_2$ to obtain an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2$ for V:

$$
\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}\mathbf{v}_1 = \frac{1}{2}(1, 1, 1, 1), \qquad \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}\mathbf{v}_2 = \frac{1}{\sqrt{6}}(0, -1, 2, -1).
$$

(ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Since the subspace V is spanned by vectors $(1, 1, 1, 1)$ and $(1, 0, 3, 0)$, it is the row space of the matrix

$$
A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix}.
$$

Then the orthogonal complement V^{\perp} is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form:

$$
\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}.
$$

Hence a vector $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ belongs to V^{\perp} if and only if

$$
\begin{cases}\nx_1 + 3x_3 = 0 \\
x_2 - 2x_3 + x_4 = 0\n\end{cases}\n\iff\n\begin{cases}\nx_1 = -3x_3 \\
x_2 = 2x_3 - x_4\n\end{cases}
$$

The general solution of the system is $(x_1, x_2, x_3, x_4) = (-3t, 2t - s, t, s) = t(-3, 2, 1, 0) + s(0, -1, 0, 1),$ where $t, s \in \mathbb{R}$. It follows that V^{\perp} is spanned by vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$. It remains to orthogonalize and normalize this basis for V^{\perp} :

$$
\mathbf{v}_3 = \mathbf{x}_3 = (0, -1, 0, 1), \qquad \mathbf{v}_4 = \mathbf{x}_4 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 = (-3, 2, 1, 0) - \frac{-2}{2}(0, -1, 0, 1) = (-3, 1, 1, 1),
$$

$$
\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{\sqrt{2}}(0, -1, 0, 1), \qquad \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \frac{1}{2\sqrt{3}}\mathbf{v}_4 = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1).
$$

Thus the vectors $\mathbf{w}_3 = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(0,-1,0,1)$ and $\mathbf{w}_4 = \frac{1}{2\sqrt{3}}$ $\frac{1}{2\sqrt{3}}(-3,1,1,1)$ form an orthonormal basis for V^{\perp} .

Alternative solution: Suppose that an orthonormal basis w_1, w_2 for the subspace V has been extended to an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ for \mathbb{R}^4 . Then the vectors $\mathbf{w}_3, \mathbf{w}_4$ form an orthonormal basis for the orthogonal complement V^{\perp} .

We know that vectors $\mathbf{v}_1 = (1, 1, 1, 1)$ and $\mathbf{v}_2 = (0, -1, 2, -1)$ form an orthogonal basis for V. This basis can be extended to a basis for \mathbb{R}^4 by adding two vectors from the standard basis. For example, we can add vectors $\mathbf{e}_3 = (0, 0, 1, 0)$ and $\mathbf{e}_4 = (0, 0, 0, 1)$. The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3, \mathbf{e}_4$ do form a basis for \mathbb{R}^4 since the matrix whose rows are these vectors is nonsingular:

$$
\begin{vmatrix} 1 & 1 & 1 & 1 \ 0 & -1 & 2 & -1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{vmatrix} = -1 \neq 0.
$$

To orthogonalize the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3, \mathbf{e}_4$, we apply the Gram-Schmidt process (note that the vectors v_1 and v_2 are already orthogonal):

$$
\mathbf{v}_3 = \mathbf{e}_3 - \frac{\mathbf{e}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{e}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = (0, 0, 1, 0) - \frac{1}{4} (1, 1, 1, 1) - \frac{2}{6} (0, -1, 2, -1) = \frac{1}{12} (-3, 1, 1, 1),
$$

\n
$$
\mathbf{v}_4 = \mathbf{e}_4 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3} \mathbf{v}_3 =
$$

\n
$$
= (0, 0, 0, 1) - \frac{1}{4} (1, 1, 1, 1) - \frac{-1}{6} (0, -1, 2, -1) - \frac{1/12}{1/12} \cdot \frac{1}{12} (-3, 1, 1, 1) = \frac{1}{2} (0, -1, 0, 1).
$$

It remains to normalize vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$:

$$
\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1), \qquad \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1),
$$

$$
\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \sqrt{12} \mathbf{v}_3 = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1), \qquad \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \sqrt{2} \mathbf{v}_4 = \frac{1}{\sqrt{2}}(0, -1, 0, 1).
$$

We have obtained an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ for \mathbb{R}^4 that extends an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2$ for the subspace V. It follows that $\mathbf{w}_3 = \frac{1}{2}$ $\frac{1}{2\sqrt{3}}(-3,1,1,1),$ $w_4=\frac{1}{\sqrt{3}}$ $\overline{2}(0,-1,0,1)$ is an orthonormal basis for V^{\perp} .

Problem 3 (30 pts.) Let
$$
A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}
$$
.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $det(A - \lambda I) = 0$. We obtain that

$$
\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 - 2(1 - \lambda) - 2(1 - \lambda)
$$

$$
= (1 - \lambda) ((1 - \lambda)^2 - 4) = (1 - \lambda) ((1 - \lambda) - 2) ((1 - \lambda) + 2) = -(\lambda - 1)(\lambda + 1)(\lambda - 3).
$$

Hence the matrix A has three eigenvalues: -1 , 1, and 3.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v} = (x, y, z)$ of A associated with an eigenvalue λ is a nonzero solution of the vector equation $(A - \lambda I)\mathbf{v} = \mathbf{0}$. To solve the equation, we apply row reduction to the matrix $A - \lambda I$.

First consider the case $\lambda = -1$. The row reduction yields

$$
A+I=\begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Hence

$$
(A+I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{cases} x-z = 0, \\ y+z = 0. \end{cases}
$$

The general solution is $x = t$, $y = -t$, $z = t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_1 = (1, -1, 1)$ is an eigenvector of A associated with the eigenvalue -1 .

Secondly, consider the case $\lambda = 1$. The row reduction yields

$$
A-I = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Hence

$$
(A-I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{cases} x+z=0, \\ y=0. \end{cases}
$$

The general solution is $x = -t$, $y = 0$, $z = t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_2 = (-1, 0, 1)$ is an eigenvector of A associated with the eigenvalue 1.

Finally, consider the case $\lambda = 3$. The row reduction yields

$$
A - 3I = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -2 \end{pmatrix}
$$

$$
\rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Hence

$$
(A-3I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{cases} x-z = 0, \\ y-z = 0. \end{cases}
$$

The general solution is $x = t$, $y = t$, $z = t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_3 = (1, 1, 1)$ is an eigenvector of A associated with the eigenvalue 3.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for \mathbb{R}^3 formed by its eigenvectors. Namely, the vectors $\mathbf{v}_1 = (1, -1, 1), \mathbf{v}_2 = (-1, 0, 1),$ and $\mathbf{v}_3 = (1, 1, 1)$ are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is a basis for \mathbb{R}^3 .

Alternatively, the existence of a basis for \mathbb{R}^3 consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.

(iv) Find all eigenvalues of the matrix A^2 .

Since A has eigenvalues -1 , 1, and 3, it is similar to the diagonal matrix

$$
B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.
$$

Namely, $A = UBU^{-1}$, where U is the matrix whose columns are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$:

$$
U = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.
$$

Then $A^2 = UBU^{-1}UBU^{-1} = UB^2U^{-1}$, that is, the matrix A^2 is similar to the diagonal matrix

$$
B^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{pmatrix}.
$$

Similar matrices have the same characteristic polynomial, hence they have the same eigenvalues. Thus the eigenvalues of A^2 are the same as the eigenvalues of B^2 : 1 and 9.

Bonus Problem 4 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

x −2 −1 0 1 2 f(x) −3 −2 1 2 5

We are looking for a function $f(x) = c_1 + c_2x$, where c_1, c_2 are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c_1 and c_2 :

$$
\begin{cases}\nc_1 - 2c_2 = -3, \\
c_1 - c_2 = -2, \\
c_1 = 1, \\
c_1 + c_2 = 2, \\
c_1 + 2c_2 = 5.\n\end{cases}
$$

This system is inconsistent. We can represent it as a matrix equation $A\mathbf{c} = \mathbf{y}$, where

$$
A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}.
$$

The least squares solution **c** of the above system is a solution of the system A^TA **c** = A^T **y**:

$$
\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}
$$

$$
\iff \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 20 \end{pmatrix} \iff \begin{cases} c_1 = 3/5 \\ c_2 = 2 \end{cases}
$$

Thus the function $f(x) = \frac{3}{5} + 2x$ is the best least squares fit to the above data among linear polynomials.

Bonus Problem 5 (20 pts.) Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W . Show that

 $\dim \text{Range}(L) + \dim \text{ker}(L) = \dim V$.

The kernel ker(L) is a subspace of V. Since the vector space V is finite-dimensional, so is ker(L). Take a basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ for the subspace ker(L), then extend it to a basis $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_m$ for the entire space V. We are going to prove that vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range $L(V)$. Then dim Range(L) = m, dim ker(L) = k, and dim $V = k + m$.

Spanning: Any vector $\mathbf{w} \in \text{Range}(L)$ is represented as $\mathbf{w} = L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$
\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_m \mathbf{u}_m
$$

for some $\alpha_i, \beta_j \in \mathbb{R}$. It follows that

$$
\mathbf{w} = L(\mathbf{v}) = \alpha_1 L(\mathbf{v}_1) + \dots + \alpha_k L(\mathbf{v}_k) + \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m) = \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m)
$$

 $(L(\mathbf{v}_i) = \mathbf{0}$ since $\mathbf{v}_i \in \text{ker}(L)$. Thus $\text{Range}(L)$ is spanned by the vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$.

Linear independence: Suppose that $t_1L(\mathbf{u}_1) + t_2L(\mathbf{u}_2) + \cdots + t_mL(\mathbf{u}_m) = \mathbf{0}$ for some $t_i \in \mathbb{R}$. Let $\mathbf{u} = t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_m \mathbf{u}_m$. Since

$$
L(\mathbf{u})=t_1L(\mathbf{u}_1)+t_2L(\mathbf{u}_2)+\cdots+t_mL(\mathbf{u}_m)=\mathbf{0},
$$

the vector **u** belongs to the kernel of L. Therefore $\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k$ for some $s_j \in \mathbb{R}$. It follows that

 $t_1u_1 + t_2u_2 + \cdots + t_mu_m - s_1v_1 - s_2v_2 - \cdots - s_kv_k = u - u = 0.$

Linear independence of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_m$ implies that $t_1 = t_2 = \cdots = t_m = 0$ (as well as $s_1 = s_2 = \cdots = s_k = 0$. Thus the vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ are linearly independent.