MATH 304
Linear Algebra

Lecture 11:
Vector spaces.



Linear operations on vectors

Let x = (x1,x0,...,x,) and y = (y1,¥2,...,yn) be
n-dimensional vectors, and r € R be a scalar.

Vector sum: x+y=(x1+y1,x2+ Yo, .-, Xn+ Yn)
Scalar multiple:  rx = (rxy, rxa, . .., rx,)

Zero vector:  0=(0,0,...,0)

Negative of a vector:  —y = (—y1,—Y2, .-, —Yn)

Vector difference:
x—y:x+(—y) = (Xl_y17X2_y2a---aXn_Yn)



Properties of linear operations

X+y=y+Xx
(x+y)+z=x+(y+2
x+0=0+x=x
x+(—x)=(—x)+x=0
r(x+y)=rx+ry

(r +s)x = rx + sx
(rs)x = r(sx)

1x = x

Ox=20

(—1)x = —x



Linear operations on matrices

Let A= (a;) and B = (bj) be mxn matrices,
and r € R be a scalar.

Matrix sum: A+ B = (a,-j + bij)lgigm, 1<j<n
Scalar multiple:  rA = (raj)i<i<m, 1<j<n

Zero matrix O:  all entries are zeros

Negative of a matrix:  —A = (—ajj)1<i<m, 1<j<n
Matrix difference: A — B = (ajj — bjj)1<i<m, 1<j<n
As far as the linear operations are concerned,

the mxn matrices have the same properties as
mn-dimensional vectors.



Vector space: informal description

Vector space = linear space = a set V of objects
(called vectors) that can be added and scaled.

That is, for any u,v € V and r € R expressions

[utv] and [ru]

should make sense.

Certain restrictions apply. For instance,
u-+v=v-+u,
2u + 3u = bu.

That is, addition and scalar multiplication in V
should be like those of n-dimensional vectors.



Vector space: definition

Vector space is a set V equipped with two
operations a: V xV —V and p:Rx V —V
that have certain properties (listed below).

The operation « is called addition. For any
u,v € V, the element a(u,v) is denoted u + v.

The operation i is called scalar multiplication. For
any r € R and u € V, the element p(r,u) is
denoted ru.



Properties of addition and scalar multiplication
(brief)

Al. a+b=b+a

A2. (a+b)+c=a+(b+c)
A3. a+0=0+a=a

A4, a+(—a)=(—-a)+a=0
A5. r(a+b)=ra+rb

A6. (r+s)a=ra+sa

A7. (rs)a = r(sa)

A8. la=a



Properties of addition and scalar multiplication (detailed)

Al. a+b=b+a forall a,bec V.
A2. (a+b)+c=a+(b+c) forall a,b,cec V.

A3. There exists an element of V/, called the zero
vector and denoted 0, such that a+0=0+a =a
forall ac V.

A4. For any a € V there exists an element of V/,
denoted —a, such that a+ (—a) =(—a)+a=0.
A5. r(a+b)=ra+rb forallr e R and a,b e V.
A6. (r+s)a=ra+sa forall ryrseR and ac V.
A7. (rs)a=r(sa) forall r,s€R and ac V.
A8. la=a forall ac V.



e Associativity of addition implies that a multiple
sum uj + up + - - - + ug is well defined for any
up,up,...,Ux € V.

e Subtraction in V is defined as usual:
a—b=a-+(-b).

e Addition and scalar multiplication are called
linear operations.

Given uq,up,...,us € V and n,n,....n € R,

[nui + nuy + -+ reug

is called a linear combination of ui, uy, ..., ug.



Examples of vector spaces

In most examples, addition and scalar multiplication
are natural operations so that properties A1-AS8 are
easy to verify.

e R". n-dimensional coordinate vectors

o M, ,(R): mxn matrices with real entries

e R™: infinite sequences (x1,x,...), x; € R
Forany x = (x1,%0,...), Yy = ()1,)2,...) ER>® and r e R

let x+y=(x1+y,x20+y2,...), rx=(rxy,rx,...).
Then 0=(0,0,...) and —x = (—xq, —X2,...).

e {0}: the trivial vector space
0+0=0 r0=0 -0=0.



Functional vector spaces

e F(R): the set of all functions f: R — R

Given functions f,g € F(R) and a scalar r € R, let
(f +g)(x) = f(x) + g(x) and (rf)(x) = rf(x) for all x € R.
Zero vector: o(x) = 0. Negative: (—f)(x) = —f(x).

e C(R): all continuous functions f : R — R

Linear operations are inherited from F(R). We only need to
check that f,g € C(R) = f+g,rf € C(R), the zero
function is continuous, and f € C(R) = —f € C(R).

e C(R): all continuously differentiable functions
f:R—R

e C*°(R): all smooth functions f: R — R

e P: all polynomials p(x) = ap + a;x + -+ + a,x"



Some general observations

e The zero vector is unique.

If z; and z, are zero vectors then z; = z; + z, = z,.

e For any a € V, the negative —a is unique.
Suppose b and b’ are negatives of a. Then

b =b+0=b'+(a+b)=(b'+a)+b=0+b=Dhb.

e 0a=0 forany ac V.

Indeed, 0a+a=0a+la=(0+1)a=1la=a.

Then l)a+a=a =— Oa+a—a=a—a = 0a=0.
e (—l)a= —a forany ac V.

Indeed, a+ (—1)a=(-1)a+a=(-1)a+la=(—-1+1)a
=0a=0.



Counterexample: dumb scaling

Consider the set V = R" with the standard
addition and a nonstandard scalar multiplication:

ra=0| forany a€ R" and r € R.

Properties A1-A4 hold because they do not involve
scalar multiplication.

A5.
Ab.
AT.

A8

ro(a+b)=roa+rob
(r+s)0a=roa+s0Oa
(s)oa=ro(s©a)
.1®a=a

~— 0=0+0
~— 0=0+0
— 0=0
<~ 0=a

A8 is the only property that fails. As a consequence,
property A8 does not follow from properties A1-A7.



Counterexample: lazy scaling

Consider the set V = R" with the standard
addition and a nonstandard scalar multiplication:

forany ac€ R” and r € R,

Properties A1-A4 hold because they do not involve
scalar multiplication.

AS5. r©(a+b)=rGa+rGb<«<=a+b=a+b
A6. (r+s)®a=rGa+sGa <= a=a+a
A7. (rs)®a=r®(s®a) < a=a
A8. 1®a=a < a=a

The only property that fails is A6.



