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Linear Algebra

Lecture 33:
Diagonalization (continued).



Diagonalization

Let L be a linear operator on a finite-dimensional vector space
V . Then the following conditions are equivalent:

• the matrix of L with respect to some basis is diagonal;
• there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Let A be an n×n matrix. Then the following conditions are
equivalent:

• A is the matrix of a diagonalizable operator;
• A is similar to a diagonal matrix, i.e., it is represented as

A = UBU−1, where the matrix B is diagonal;
• there exists a basis for R

n formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.
Otherwise A is called defective.



Theorem 1 If v1, v2, . . . , vk are eigenvectors of a linear
operator L associated with distinct eigenvalues λ1, λ2, . . . , λk ,
then v1, v2, . . . , vk are linearly independent.

Theorem 2 Let λ1, λ2, . . . , λk be distinct eigenvalues of a
linear operator L. For any 1 ≤ i ≤ k let Si be a basis for the
eigenspace associated with the eigenvalue λi . Then the union
S1 ∪ S2 ∪ · · · ∪ Sk is a linearly independent set.

Corollary Let A be an n×n matrix such that the
characteristic equation det(A − λI ) = 0 has n distinct real
roots. Then
(i) there exists a basis for R

n consisting of eigenvectors of A;
(ii) all eigenspaces of A are one-dimensional.



There are two obstructions to existence of a basis
consisting of eigenvectors. They are illustrated by

the following examples.

Example 1. A =

(
1 1
0 1

)

.

det(A − λI ) = (λ − 1)2. Hence λ = 1 is the only
eigenvalue. The associated eigenspace is the line

t(1, 0).

Example 2. A =

(
0 −1
1 0

)

.

det(A − λI ) = λ2 + 1.
=⇒ no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



Matrix polynomials

Definition. Given an n-by-n matrix A, we let

A2 = AA, A3 = AAA, . . . , Ak = AA . . .A︸ ︷︷ ︸

k times

, . . .

Also, let A1 = A and A0 = In.

Associativity of matrix multiplication implies that all powers
Ak are well defined and AjAk = Aj+k for all j , k ≥ 0. In
particular, all powers of A commute.

Definition. For any polynomial

p(x) = c0x
m + c1x

m−1 + · · · + cm−1x + cm,

let p(A) = c0A
m + c1A

m−1 + · · · + cm−1A + cmIn.

Theorem If A = diag(a1, a2, . . . , an), then

p(A) = diag
(
p(a1), p(a2), . . . , p(an)

)
.



Let A be an n-by-n matrix and suppose there exists

a basis v1, . . . , vn for R
n consisting of eigenvectors

of A. That is, Avk = λkvk , where λk ∈ R.

Then A = UBU−1, where B = diag(λ1, λ2, . . . , λn)
and U is a transition matrix whose columns are

vectors v1, v2, . . . , vn.

A2 = UBU−1UBU−1 = UB2U−1,
A3 = A2A = UB2U−1UBU−1 = UB3U−1.

Likewise, An = UBnU−1 for any n ≥ 1.

I + 2A − 3A2 = UIU−1 + 2UBU−1 − 3UB2U−1 =
= U(I + 2B − 3B2)U−1.

Likewise, p(A) = Up(B)U−1 for any polynomial
p(x).



Problem. Diagonalize the matrix A =

(
4 3
0 1

)

.

Characteristic equation of A:

∣
∣
∣
∣

4 − λ 3
0 1 − λ

∣
∣
∣
∣
= 0.

(4 − λ)(1 − λ) = 0 =⇒ λ1 = 4, λ2 = 1.

Associated eigenvectors: v1 = (1, 0), v2 = (−1, 1).

Thus A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.



Problem. Let A =

(
4 3
0 1

)

. Find a matrix C

such that C 2 = A.

We know that A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Suppose that D2 = B for some matrix D. Let C = UDU−1.
Then C 2 = UDU−1UDU−1 = UD2U−1 = UBU−1 = A.

We can take D =

(√
4 0

0
√

1

)

=

(
2 0
0 1

)

.

Then C =

(
1 −1
0 1

)(
2 0
0 1

) (
1 1
0 1

)

=

(
2 1
0 1

)

.



Initial value problem for a system of linear ODEs:
{

dx
dt

= 4x + 3y ,

dy

dt
= y ,

x(0) = 1, y(0) = 1.

The system can be rewritten in vector form:

dv

dt
= Av, where A =

(
4 3
0 1

)

, v =

(
x

y

)

.

Matrix A is diagonalizable: A = UBU−1, where

B =

(
4 0
0 1

)

, U =

(
1 −1
0 1

)

.

Let w =

(
w1

w2

)

be coordinates of the vector v relative to the

basis v1 = (1, 0), v2 = (−1, 1) of eigenvectors of A. Then

v = Uw =⇒ w = U−1v.



It follows that

dw

dt
=

d

dt
(U−1v) = U−1

dv

dt
= U−1Av = U−1AUw.

Hence
dw

dt
= Bw ⇐⇒

{
dw1

dt
= 4w1,

dw2

dt
= w2.

General solution: w1(t) = c1e
4t , w2(t) = c2e

t , where c1, c2 ∈ R.

Initial condition:

w(0) = U−1v(0) =

(
1 −1
0 1

)
−1 (

1
1

)

=

(
1 1
0 1

)(
1
1

)

=

(
2
1

)

.

Thus w1(t) = 2e4t , w2(t) = et . Then
(

x(t)
y(t)

)

= Uw(t) =

(
1 −1
0 1

)(
2e4t

et

)

=

(
2e4t−et

et

)

.


