
MATH 304

Linear Algebra

Lecture 36:
Complexification.

Symmetric and orthogonal matrices.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that i2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is
z̄ = x − iy . The modulus of z is |z | =

√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2 − (iy)2 = x2 + y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Complex exponentials

Definition. For any z ∈ C let

ez = 1 + z +
z2

2!
+ · · · + zn

n!
+ · · ·

Remark. A sequence of complex numbers
z1 = x1 + iy1, z2 = x2 + iy2, . . . converges
to z = x + iy if xn → x and yn → y as n → ∞.

Theorem 1 If z = x + iy , x , y ∈ R, then

ez = ex(cos y + i sin y).

In particular, e iφ = cos φ + i sin φ, φ ∈ R.

Theorem 2 ez+w = ez · ew for all z , w ∈ C.



Proposition e iφ = cos φ + i sin φ for all φ ∈ R.

Proof: e iφ = 1 + iφ +
(iφ)2

2!
+ · · · + (iφ)n

n!
+ · · ·

The sequence 1, i , i2, i3, . . . , in, . . . is periodic:
1, i ,−1,−i
︸ ︷︷ ︸

, 1, i ,−1,−i
︸ ︷︷ ︸

, . . .

It follows that

e iφ = 1 − φ2

2!
+

φ4

4!
− · · · + (−1)k φ2k

(2k)!
+ · · ·

+ i

(

φ − φ3

3!
+

φ5

5!
− · · · + (−1)k φ2k+1

(2k + 1)!
+ · · ·

)

= cos φ + i sin φ.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x , y) ∈ R

2.

y

x0

r

φ
0

x = r cos φ, y = r sin φ =⇒ z = r(cos φ + i sin φ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then
z1z2 = r1r2e

i(φ1+φ2), z1/z2 = (r1/r2)e
i(φ1−φ2).



Fundamental Theorem of Algebra
Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with
multiplicities).

Equivalently, if

p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Complex eigenvalues/eigenvectors

Example. A =

(
0 −1
1 0

)

. det(A − λI ) = λ2 + 1.

Characteristic roots: λ1 = i and λ2 = −i .
Associated eigenvectors: v1 = (1,−i) and v2 = (1, i).

(
0 −1
1 0

) (
1

−i

)

=

(
i

1

)

= i

(
1

−i

)

,

(
0 −1
1 0

) (
1
i

)

=

(
−i

1

)

= −i

(
1
i

)

.

v1, v2 is a basis of eigenvectors. In which space?



Complexification

Instead of the real vector space R
2, we consider a

complex vector space C
2 (all complex numbers are

admissible as scalars).

The linear operator f : R
2 → R

2, f (x) = Ax is
extended to a complex linear operator

F : C
2 → C

2, F (x) = Ax.

The vectors v1 = (1,−i) and v2 = (1, i) form a
basis for C

2.

C
2 is also a real vector space (of real dimension 4). The

standard real basis for C
2 is e1 = (1, 0), e2 = (0, 1),

ie1 = (i , 0), ie2 = (0, i). The matrix of the operator F with

respect to this basis has a block structure

(
A O

O A

)

.



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R

n:

x · y = x1y1 + x2y2 + · · · + xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ C

n:

x · y = x1y1 + x2y2 + · · · + xnyn.

If z = r + it (t, s ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.
Hence x · x = |x1|2 + |x2|2 + · · · + |xn|2 ≥ 0.
Also, x · x = 0 if and only if x = 0.

The norm is defined by ‖x‖ =
√

x · x.



Normal matrices

Definition. An n×n matrix A is called
• symmetric if AT = A;
• orthogonal if AAT = ATA = I , i.e., AT = A−1;
• normal if AAT = ATA.

Theorem Let A be an n×n matrix with real
entries. Then
(a) A is normal ⇐⇒ there exists an orthonormal
basis for C

n consisting of eigenvectors of A;
(b) A is symmetric ⇐⇒ there exists an orthonormal
basis for R

n consisting of eigenvectors of A.



Example. A =





1 0 1
0 3 0
1 0 1



.

• A is symmetric.
• A has three eigenvalues: 0, 2, and 3.
• Associated eigenvectors are v1 = (−1, 0, 1),
v2 = (1, 0, 1), and v3 = (0, 1, 0), respectively.

• Vectors 1√
2
v1,

1√
2
v2, v3 form an orthonormal

basis for R
3.



Theorem Suppose A is a normal matrix. Then for
any x ∈ C

n and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.
Also, Ax = λx ⇐⇒ Ax = λ x for any matrix A

with real entries.

Corollary All eigenvalues λ of a symmetric matrix
are real (λ = λ). All eigenvalues λ of an
orthogonal matrix satisfy λ = λ−1 ⇐⇒ |λ| = 1.



Why are orthogonal matrices called so?

Theorem Given an n×n matrix A, the following
conditions are equivalent:
(i) A is orthogonal: AT = A−1;
(ii) columns of A form an orthonormal basis for R

n;
(iii) rows of A form an orthonormal basis for R

n.

Proof: Entries of the matrix ATA are dot products of
columns of A. Entries of AAT are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix
from one orthonormal basis to another.



Example. Aφ =

(
cos φ − sin φ
sin φ cos φ

)

.

• AφAψ = Aφ+ψ

• A−1
φ = A−φ = AT

φ

• Aφ is orthogonal

• det(Aφ − λI ) = (cos φ − λ)2 + sin2 φ.

• Eigenvalues: λ1 = cos φ + i sin φ = e iφ,
λ2 = cos φ − i sin φ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C
2.



Consider a linear operator L : R
n → R

n, L(x) = Ax,
where A is an n×n orthogonal matrix.

Theorem There exists an orthonormal basis for R
n

such that the matrix of L relative to this basis has a
diagonal block structure








D±1 O . . . O

O R1 . . . O
...

... . . . ...
O O . . . Rk








,

where D±1 is a diagonal matrix whose diagonal
entries are equal to 1 or −1, and

Rj =

(
cos φj − sin φj

sin φj cos φj

)

, φj ∈ R.


