MATH 304
Linear Algebra

Lecture 15:
Linear transformations (continued).
Range and kernel.
Matrix transformations.



Linear mapping = linear transformation = linear function

Definition. Given vector spaces V; and V,, a
mapping L: Vi, — V, is linear if

L(x +y) = L(x) + L(y).
L(rx) = rL(x)
for any x,y € V4 and r € R.




Properties of linear mappings
Let L: V7 — V, be a linear mapping.

o L(nvi+ -+ nvk)=nl(vy)+ -+ rnl(vg)
forall k>1,vy,...,vpe € Vy,and ry,....r, € R.
L(rlvl + r2v2) = L(rlvl) + L(r2v2) = I’lL(Vl) + r2L(v2),

L(rvi + nvs + r3vs) = L(nvy + nva) + L(rsvs) =
= rL(vi) + rnL(vz) + rsL(v3), and so on.

e [(0;) =0, where 0; and 0, are zero vectors in
Vi and V,, respectively.

L(0,) = L(00;) = OL(0,) = 0.
o [(—v)=—L(v) forany v e V.
L(=v) = L((=1)v) = (=1)L(v) = —L(v).



Examples of linear mappings

e Scaling L:V — V, L(v) = sv, where s € R.
L(x+y) = s(x+y) = sx+ sy = L(x) + L(y),

L(rx) = s(rx) = r(sx) = rL(x).

e Dot product with a fixed vector

(:R" =R, ¢(v) =v-vy, where vo € R".
l(x+y)=(x+y) vo=x-vo+y vo={(x)+{(y),
U(rx) = (rx) - vo = r(x - vg) = rf(x).

e (ross product with a fixed vector

L:R3— R3 L(v)=v X vg, where vy € R3.

e Multiplication by a fixed matrix
L:R"— R™ L(v) = Av, where Ais an mxn
matrix and all vectors are column vectors.



Linear mappings of functional vector spaces

e FEvaluation at a fixed point
(: F(R) — R, ¢(f)=f(a), where a € R.

e Multiplication by a fixed function
L: F(R)— F(R), L(f)=gf, where g € F(R).

e Differentiation D : C}(R) — C(R), L(f)=f".
D(f +g)=(f +g) =f"+g =D(f) + D(g),
D(rf) = (rf) = rf’ = rD(f).

e Integration over a finite interval

b
(:C(R) =R, £(f) :/ f(x) dx, where
abcR, a<b. ’



Properties of linear mappings

e If a linear mapping L: V — W is invertible then
the inverse mapping L= : W — V is also linear.

o If L:V —=W and M: W — X are linear
mappings then the composition MolL:V — X is
also linear.

o If L1:V—W and Ly, :V — W are linear
mappings then the sum L; + L, is also linear.



Linear differential operators

e an ordinary differential operator
2 d

— +t&—— + &,

where gy, g1, & are smooth functions on R.

Thatis, L(f) = gof” + g1f’ + &f.

L:C®(R) — C*(R), L=g

e Laplace’s operator A : C*(R?) — C*(RR?),
0’f  O°*f

= + oy

(a.k.a. the Laplacian; also denoted by Vz).

Af



Basis and coordinates

If {vi,vo,...,v,} is a basis for a vector space V,
then any vector v € V' has a unique representation

V = X1V1 + XoVo + - -+ 4+ XV,

where x; € R. The coefficients xq,x,...,x, are
called the coordinates of v with respect to the
ordered basis vi,vy, ..., v,.
The mapping

vector v +— its coordinates (xi,xo, ..., Xp)

is a one-to-one correspondence between V and R”".
This correspondence respects linear operations in V
and in R”, i.e., it is a linear transformation.



Change of coordinates

Let V be a vector space of dimension n.
Let vq,vy,...,v, bea basis for V and g : V — R” be the
coordinate mapping corresponding to this basis.

Let ug,uy,...,u, be another basis for V and g : V — R”
be the coordinate mapping corresponding to this basis.
V
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R” — R”

The composition gog; * is a linear transformation of R”.
It has the form x — Ux, where U is an nxn matrix.

U is called the transition matrix from v;,v,..., v, to

up,Us...,u,. Columns of U are coordinates of the vectors
Vi,Vo,...,V, with respect to the basis ui,uy,..., u,.



Example. Let V be the subspace of C(R) spanned
by the function f(x) = xe* + 1 and its derivatives.
Then dimV = 3.

One basisfor Vis vi = f, v =f', v3 =f".

Another basis is u1(x) = xe*, t(x) = ¥, us(x) = 1.

vi(x) = xe* + 1 = uy(x) + us(x),
Va(x) = xe* 4+ e = uy(x) + tr(x),
v3(x) = xe* 4 2e* = uy(x) + 2ua(x).

111
Transition matrix from vy, vo,v3 to ug,up,u3: [0 1 2
100
Notice that
111
(v, u0,u3) [ O 1 2| = (vg, w2, v3).
100



Range and kernel

Let V., W be vector spaces and L:V — W be a
linear mapping.

Definition. The range (or image) of L is the set
of all vectors w € W such that w = L(v) for some
v € V. The range of L is denoted L(V).

The kernel of L, denoted ker(L), is the set of all
vectors v € V such that L(v) = 0.

Theorem (i) The range of L is a subspace of W.
(i) The kernel of L is a subspace of V.



X 10 —1 X
Example. L:R3—=R3 L|y|] =112 -1 y
z 10 -1 z

The kernel ker(L) is the nullspace of the matrix.

X 1 0 —1
Llyl=x|1]+y|2]+z]| -1
z 1 0 —1

The range L(IR®) is the column space of the matrix.



X 10 -1 X
Example. L:R?—=R3 L|ly]| =112 —1 y
z 10 -1 z

The range of L is spanned by vectors (1,1, 1), (0,2,0), and
(—1,—1,-1). It follows that L(IR3) is the plane spanned by
(1,1,1) and (0,1,0).

To find ker(L), we apply row reduction to the matrix:

10 -1 10 -1 10 —-1
12 -1]—-102 0] —={({01 O
10 -1 00 O 00 O

Hence (x,y,z) € ker(L) if x —z=y =0.
It follows that ker(L) is the line spanned by (1,0,1).



Example. L: C3(R)— C(R), L(u)=u"—2u"+ U

According to the theory of differential equations, the initial
value problem

u"(x) —2u"(x) + u'(x) = g(x), x€eR,

u(a) = bo,
v'(a) = by,
u’(a) = by

has a unique solution for any g € C(R) and any
bo, by, by € R. It follows that L(C3(R)) = C(R).

Also, the initial data evaluation /(u) = (u(a), u'(a), u"(a)),
which is a linear mapping / : C3(R) — R3, is one-to-one
when restricted to ker(L). Hence dimker(L) = 3.

It is easy to check that L(xe*) = L(eX) = L(1) =0.

It follows that ker(L) = Span(xe*, %, 1).



General linear equations

Definition. A linear equation is an equation of the form
L(x) = b,

where L:V — W is a linear mapping, b is a given vector
from W, and x is an unknown vector from V.

The range of L is the set of all vectors b € W such that the
equation L(x) = b has a solution.

The kernel of L is the solution set of the homogeneous linear
equation L(x) = 0.
Theorem If the linear equation L(x) = b is solvable and
dimker L < 0o, then the general solution is

Xo + tivy + - - 4 TV,

where Xq is a particular solution, vq,...,v, is a basis for the
kernel of L, and ty,...,t, are arbitrary scalars.



X+y+z=4
Example. {x+2y:3.
X X
111
. T3 2 —
L:R>—= R Ly —(120>y
z z

Linear equation: L(x) =b, where b= (g)

1114 11 1] 4 10 2| 5
— —
1 2 0|3 01 —1|-1 01 —-1|-1
{x—|—2z:5 {X:5—2Z
<

y—z=-1 y=—-1+42z
(x,y,z)=(—2t,—-1+t,t)=(5—-1,0)+ t(—2,1,1).



Example. u"'(x) — 2u"(x) + u'(x) = ¥

Linear operator L : C3(R) — C(R),
Lu=u"—24" + U

Linear equation: Lu = b, where b(x) = e?*.

We already know that functions xe*, ¥ and 1 form

a basis for the kernel of L. It remains to find a
particular solution.

L(e¥) = 8e¥ — 2(4e%¥) + 22 = 2e?*.

Since L is a linear operator, L(3e%) = e**.

Particular solution: wup(x) = €.

Thus the general solution is
u(x) = 26¥ + tixe* + he* + t.



Matrix transformations

Any mxn matrix A gives rise to a transformation
L:R" — R™ given by L(x) = Ax, where x € R”
and L(x) € R™ are regarded as column vectors.
This transformation is linear.

X 102 X
Example. Ly | =13 4 7||vy
z 0 5 8 z

Let e; = (1,0,0), e; =(0,1,0), e3 =(0,0,1) be the
standard basis for R®. We have that L(e;) = (1,3,0),

L(ex) = (0,4,5), L(es)=(2,7,8). Thus L(e1),L(e2),L(e3)
are columns of the matrix.



Problem. Find a linear mapping L : R3® — R?
such that L(e;) = (1,1), L(ez) = (0,—2),
L(e3) = (3,0), where e;, e;, e; is the standard
basis for R3.

L(x,y,2) = L(xe1 + ye; + ze3)
= xL(e1) + yL(ez) + zL(e3)
=x(1,1) + y(0,—-2) + 2(3,0) = (x + 3z, x — 2y)

Ly z)= (XH32) (1 03 x
Yo 2) = x—2y) \1 =20 }Z/

Columns of the matrix are vectors L(ej), L(ez), L(e3).



Theorem Suppose L:R" — R™ is a linear map. Then
there exists an mxn matrix A such that L(x) = Ax for all

x € R". Columns of A are vectors L(e;), L(ez),...,L(e,),
where e, e,, ..., e, is the standard basis for R".
Y1 a1 d12 ... Adip X1
Y2 d1 dx» ... d2p X2

y=Ax <<— _ =

n an a2 ain
Y2 asy a azp
= =X + X2 + o+ Xp

Ym dm1 am?2 Amn



