MATH 304
Linear Algebra

Lecture 19:
Least squares problems (continued).
Norms and inner products.



Orthogonal projection

Theorem 1 Let V be a subspace of R". Then
any vector x € R” is uniquely represented as
X =p+o0, where pc V and o€ V'

In the above expansion, p is called the orthogonal
projection of the vector x onto the subspace V.

Theorem 2 ||x —v|| > ||[x — p|| forany v#p in V.

Thus |jo|| =[x —p|| = min |x — v|| is the

distance from the vector x to the subspace V.






Least squares solution

System of linear equations:
aiixy + apXxo + -+ + apXny = bl
axxy + axnxo + - + aanXy, = by

<— Ax=b
amiX1 + ampXo + -+ ampXp = bm

For any x € R" define a residual r(x) = b — Ax.

The least squares solution x to the system is the
one that minimizes ||r(x)|| (or, equivalently, ||r(x)|?).

[r(x)[|* = Z (ainxi + apxo + + -+ + ainxa — b;)?
i=1



Let A be an mxn matrix and let b € R™,

Theorem A vector X is a least squares solution of
the system Ax = b if and only if it is a solution of
the associated normal system |A7Ax = A'b.

Proof: Ax is an arbitrary vector in R(A), the column space of
A. Hence the length of r(x) = b — Ax is minimal if Ax is the
orthogonal projection of b onto R(A). That is, if r(x) is
orthogonal to R(A).

We know that {row space}® = {nullspace} for any matrix.

In particular, R(A)* = N(AT), the nullspace of the transpose
matrix of A. Thus X is a least squares solution if and only if

ATr(%) =0 < AT(b—AR) =0 < ATA%=ATb.

Corollary The normal system A" Ax = ATb is
always consistent.



Problem. Find the constant function that is the
least square fit to the following data

x |o0]1]2]3
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1 1
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1 2

c=3(1+0+1+42)=1 (mean arithmetic value)



Problem. Find the linear polynomial that is the
least square fit to the following data
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Problem. Find the quadratic polynomial that is the least
square fit to the following data
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Norm

The notion of norm generalizes the notion of length
of a vector in R".

Definition. Let V be a vector space. A function
a:V — R is called a norm on V if it has the
following properties:

(i) a(x) >0, a(x) =0 only for x =0 (positivity)
(i) a(rx) =|rla(x) forall r € R (homogeneity)
(i) a(x+y) <a(x)+aly) (triangle inequality)

Notation. The norm of a vector x € V' is usually
denoted ||x||. Different norms on V are
distinguished by subscripts, e.g., ||x||1 and ||x]|».



Examples. V =R", x=(x1,%,...,%,) € R,
o HXHOO = max(|x1], |X2’7 SR |Xn‘)'

Positivity and homogeneity are obvious.
The triangle inequality:
xi + yil < |xi| + [yil < max; |x;| + max; |yl

= max; [x; + y;| < max; [x;| + max;|y;]

o [Ix[[x = Pal + Pef +-- -+ |xl.

Positivity and homogeneity are obvious.
The triangle inequality: |x; + yi| < |xi| + |yl

= 2yl <2l + 2 1yl



Examples. V =TR", x = (x1,%,...,X,) € R".

1/p

o [Ixlp=(Pal’+Ixl”+ -+ x[?)"", p>0.

Remark. ||x||2 = Euclidean length of x.

Theorem ||x||, is a norm on R” for any p > 1.

Positivity and homogeneity are still obvious (and
hold for any p > 0). The triangle inequality for
p > 1 is known as the Minkowski inequality:

1
(Jx1 + ylP + |2 + yolP + -+ + X0 + yalP) /P <

< (bl -+ bal?) 77+ (1l - Dyal?)



Normed vector space

Definition. A normed vector space is a vector
space endowed with a norm.

The norm defines a distance function on the normed
vector space: dist(x,y) = [|[x —y]|.

Then we say that a sequence xi,Xp,... converges
to a vector x if dist(x,x,) — 0 as n — oc.

Also, we say that a vector x is a good
approximation of a vector xg if dist(x,xg) is small.



Unit circle: [[x| =1

[
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Ix]| = (2 + x3)Y/?
Ix[| = (2x2 4+ x2)"*
Ix]| = [xa| + [x]

[x[| = max(]xal, [x])
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Examples. V = Cla,b], f:[a, b] — R,

o [l = max F(x)]

b
o Il = [ 170l o

b 1/p
s L= ([ reopax) oo

Theorem ||f||, is a norm on CJa, b] for any p > 1.



Inner product

The notion of inner product generalizes the notion
of dot product of vectors in R”.

Definition. Let V be a vector space. A function
B:V xV —R, usually denoted ((x,y) = (x,y),
is called an inner product on V if it is positive,
symmetric, and bilinear. That is, if

(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) ={y,x) (symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+vy,z) =(x,z) + (y,z) (distributive law)
An inner product space is a vector space endowed
with an inner product.



Examples. V =R".

o (X,y) =X-y=Xxy1+ X0+ + Xp¥n.
o (x,y) =dixiy1 + doxoys + -+ + dpXn¥n,
where di, d>, ..., d, > 0.

e (x,y) = (Dx)-(Dy),

where D is an invertible nxn matrix.

Remarks. (a) Invertibility of D is necessary to show
that (x,x) =0 — x=0.

(b) The second example is a particular case of the
third one when D = diag(d;’?, di’?, ..., di'?).



Counterexamples. V = R?.

o (X,y) =X1y1 — X
Let v = (1,2), then (v,v) =12 — 22 = -3,
(x,y) is symmetric and bilinear, but not positive.

o (X,y) =2x1y1 + x1X2 + 2x0)2 + Y1)o.

v=(1,1),w=(1,0) = (v,w) =3, (2v,w) = 8.
(x,y) is positive and symmetric, but not bilinear.

o (X,y) = Xx1y1 + X1y2 — Xoy1 + X2)52.
v=(1,1),w=(1,0) = (v,w) =0, (w,v) =2.
(x,y) is positive and bilinear, but not symmetric.



