> MATH 304
> Linear Algebra

Lecture 21:
The Gram-Schmidt orthogonalization process. Eigenvalues and eigenvectors of a matrix.

Orthogonal sets

Let V be a vector space with an inner product.
Definition. Nonzero vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ form an orthogonal set if they are orthogonal to each other: $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0$ for $i \neq j$.
If, in addition, all vectors are of unit norm, $\left\|\mathbf{v}_{i}\right\|=1$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ is called an orthonormal set.

Theorem Any orthogonal set is linearly independent.

Orthogonal projection

Theorem Let V be an inner product space and V_{0} be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V_{0}$ and $\mathbf{o} \perp V_{0}$.

The component \mathbf{p} is the orthogonal projection of the vector \mathbf{x} onto the subspace V_{0}. The distance from \mathbf{x} to the subspace V_{0} is $\|\mathbf{o}\|$.

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V_{0} then

$$
\mathbf{p}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle}{\left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle} \mathbf{v}_{n} .
$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for V. Let
$\mathbf{v}_{1}=\mathbf{x}_{1}$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$,
$\mathbf{v}_{n}=\mathbf{x}_{n}-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\langle\mathbf{v}_{n-1}, \mathbf{v}_{n-1}\right\rangle} \mathbf{v}_{n-1}$.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.

$$
\begin{gathered}
\text { Any basis } \\
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}
\end{gathered}
$$

Orthogonal basis

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}
$$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_{k}=\mathbf{x}_{k}-\left(\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{k-1} \mathbf{x}_{k-1}\right), 1 \leq k \leq n$;
- the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is the same as the span of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$;
- \mathbf{v}_{k} is orthogonal to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k}$, where \mathbf{p}_{k} is the orthogonal projection of the vector \mathbf{x}_{k} on the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\left\|\mathbf{v}_{k}\right\|$ is the distance from \mathbf{x}_{k} to the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$.

Normalization

Let V be a vector space with an inner product.
Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.
Let $\mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}, \ldots, \mathbf{w}_{n}=\frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|}$.
Then $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is an orthonormal basis for V.
Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for an inner product space V. Let

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1}, \quad \mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\left\langle\mathbf{x}_{2}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}, \quad \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}, \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\left\langle\mathbf{x}_{3}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}-\left\langle\mathbf{x}_{3}, \mathbf{w}_{2}\right\rangle \mathbf{w}_{2}, \quad \mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|},
\end{aligned}
$$

$$
\mathbf{v}_{n}=\mathbf{x}_{n}-\left\langle\mathbf{x}_{n}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}-\cdots-\left\langle\mathbf{x}_{n}, \mathbf{w}_{n-1}\right\rangle \mathbf{w}_{n-1},
$$

$$
\mathbf{w}_{n}=\frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|} .
$$

Then $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is an orthonormal basis for V.

Problem. Let V_{0} be a subspace of dimension k in \mathbb{R}^{n}. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ be a basis for V_{0}.
(i) Find an orthogonal basis for V_{0}.
(ii) Extend it to an orthogonal basis for \mathbb{R}^{n}.

Approach 1. Extend $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ to a basis $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ for \mathbb{R}^{n}. Then apply the Gram-Schmidt process to the extended basis. We shall obtain an orthogonal basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ for \mathbb{R}^{n}. By construction, $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\operatorname{Span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=V_{0}$. It follows that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for V_{0}. Clearly, it is orthogonal.

Approach 2. First apply the Gram-Schmidt process to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ for V_{0}. Secondly, find a basis $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ for the orthogonal complement V_{0}^{\perp} and apply the Gram-Schmidt process to it obtaining an orthogonal basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ for V_{0}^{\perp}. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ is an orthogonal basis for \mathbb{R}^{n}.

Problem. Let Π be the plane in \mathbb{R}^{3} spanned by vectors $\mathbf{x}_{1}=(1,2,2)$ and $\mathbf{x}_{2}=(-1,0,2)$.
(i) Find an orthonormal basis for Π.
(ii) Extend it to an orthonormal basis for \mathbb{R}^{3}.
$\mathbf{x}_{1}, \mathbf{x}_{2}$ is a basis for the plane Π. We can extend it to a basis for \mathbb{R}^{3} by adding one vector from the standard basis. For instance, vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, and $x_{3}=(0,0,1)$ form a basis for \mathbb{R}^{3} because

$$
\left|\begin{array}{rrr}
1 & 2 & 2 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right|=2 \neq 0 .
$$

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_{1}=(1,2,2), \mathbf{x}_{2}=(-1,0,2), \mathbf{x}_{3}=(0,0,1)$:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1}=(1,2,2) \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(-1,0,2)-\frac{3}{9}(1,2,2) \\
& =(-4 / 3,-2 / 3,4 / 3), \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2} \\
& =(0,0,1)-\frac{2}{9}(1,2,2)-\frac{4 / 3}{4}(-4 / 3,-2 / 3,4 / 3) \\
& =(2 / 9,-2 / 9,1 / 9) .
\end{aligned}
$$

Now $\mathbf{v}_{1}=(1,2,2), \mathbf{v}_{2}=(-4 / 3,-2 / 3,4 / 3)$,
$\mathbf{v}_{3}=(2 / 9,-2 / 9,1 / 9)$ is an orthogonal basis for \mathbb{R}^{3} while $\mathbf{v}_{1}, \mathbf{v}_{2}$ is an orthogonal basis for Π. It remains to normalize these vectors.
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle=9 \Longrightarrow\left\|\mathbf{v}_{1}\right\|=3$
$\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle=4 \Longrightarrow\left\|\mathbf{v}_{2}\right\|=2$
$\left\langle\mathbf{v}_{3}, \mathbf{v}_{3}\right\rangle=1 / 9 \Longrightarrow\left\|\mathbf{v}_{3}\right\|=1 / 3$
$\mathbf{w}_{1}=\mathbf{v}_{1} /\left\|\mathbf{v}_{1}\right\|=(1 / 3,2 / 3,2 / 3)=\frac{1}{3}(1,2,2)$,
$\mathbf{w}_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|=(-2 / 3,-1 / 3,2 / 3)=\frac{1}{3}(-2,-1,2)$,
$\mathbf{w}_{3}=\mathbf{v}_{3} /\left\|\mathbf{v}_{3}\right\|=(2 / 3,-2 / 3,1 / 3)=\frac{1}{3}(2,-2,1)$.
$\mathbf{w}_{1}, \mathbf{w}_{2}$ is an orthonormal basis for Π.
$\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ is an orthonormal basis for \mathbb{R}^{3}.

Problem. Find the distance from the point $\mathbf{y}=(0,0,0,1)$ to the subspace $V \subset \mathbb{R}^{4}$ spanned by vectors $\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$, and $\mathbf{x}_{3}=(-3,7,1,3)$.

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. The desired distance will be $\left|\mathbf{v}_{4}\right|$.
$\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$,
$\mathbf{x}_{3}=(-3,7,1,3), \mathbf{y}=(0,0,0,1)$.

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=(1,-1,1,-1)
$$

$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(1,1,3,-1)-\frac{4}{4}(1,-1,1,-1)$
$=(0,2,2,0)$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{8}(0,2,2,0)$
$=(0,0,0,0)$.

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_{3} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. V is a plane, not a 3 -dimensional subspace. We should orthogonalize vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}$.
$\tilde{\mathbf{v}}_{3}=\mathbf{y}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(0,0,0,1)-\frac{-1}{4}(1,-1,1,-1)-\frac{0}{8}(0,2,2,0)$
$=(1 / 4,-1 / 4,1 / 4,3 / 4)$.
$\left|\tilde{\mathbf{v}}_{3}\right|=\left|\left(\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}\right)\right|=\frac{1}{4}|(1,-1,1,3)|=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}$.

Problem. Find the distance from the point $\mathbf{z}=(0,0,1,0)$ to the plane Π that passes through the point $\mathbf{x}_{0}=(1,0,0,0)$ and is parallel to the vectors $\mathbf{v}_{1}=(1,-1,1,-1)$ and $\mathbf{v}_{2}=(0,2,2,0)$.

The plane Π is not a subspace of \mathbb{R}^{4} as it does not pass through the origin. Let $\Pi_{0}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then $\Pi=\Pi_{0}+\mathbf{x}_{0}$.
Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z}-\mathbf{x}_{0}$ to the plane Π_{0}.
We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{z}-\mathbf{x}_{0}$. This will yield an orthogonal system $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$. The desired distance will be $\left|\mathbf{w}_{3}\right|$.

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,-1,1,-1), \mathbf{v}_{2}=(0,2,2,0), \mathbf{z}-\mathbf{x}_{0}=(-1,0,1,0) . \\
& \quad \mathbf{w}_{1}=\mathbf{v}_{1}=(1,-1,1,-1), \\
& \mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}=\mathbf{v}_{2}=(0,2,2,0) \text { as } \mathbf{v}_{2} \perp \mathbf{v}_{1} . \\
& \mathbf{w}_{3}=\left(\mathbf{z}-\mathbf{x}_{0}\right)-\frac{\left\langle\mathbf{z}-\mathbf{x}_{0}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}-\frac{\left\langle\mathbf{z}-\mathbf{x}_{0}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{2} \\
& \quad=(-1,0,1,0)-\frac{0}{4}(1,-1,1,-1)-\frac{2}{8}(0,2,2,0) \\
& =(-1,-1 / 2,1 / 2,0) . \\
& \left|\mathbf{w}_{3}\right|=\left|\left(-1,-\frac{1}{2}, \frac{1}{2}, 0\right)\right|=\frac{1}{2}|(-2,-1,1,0)|=\frac{\sqrt{6}}{2}=\sqrt{\frac{3}{2}} .
\end{aligned}
$$

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

Remarks. - Alternative notation: eigenvalue $=$ characteristic value, eigenvector $=$ characteristic vector.

- The zero vector is never considered an eigenvector.

Example. $\quad A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{1}{0} & =\binom{2}{0}=2\binom{1}{0}, \\
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{0}{-2} & =\binom{0}{-6}=3\binom{0}{-2} .
\end{aligned}
$$

Hence $(1,0)$ is an eigenvector of A belonging to the eigenvalue 2 , while $(0,-2)$ is an eigenvector of A belonging to the eigenvalue 3 .

Example. $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{1}=\binom{1}{1}, \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1}=\binom{-1}{1}$.
Hence $(1,1)$ is an eigenvector of A belonging to the eigenvalue 1 , while $(1,-1)$ is an eigenvector of A belonging to the eigenvalue -1 .
Vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,-1)$ form a basis for \mathbb{R}^{2}. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L(\mathbf{x})=A \mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ is $B=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.

Let A be an $n \times n$ matrix. Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $L(\mathbf{x})=A \mathbf{x}$. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a nonstandard basis for \mathbb{R}^{n} and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of A. If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow B=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

