MATH 304 Linear Algebra

Lecture 21: The Gram-Schmidt orthogonalization process. Eigenvalues and eigenvectors of a matrix.

Orthogonal sets

Let V be a vector space with an inner product.

Definition. Nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an **orthogonal set** if they are orthogonal to each other: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|\mathbf{v}_i\| = 1$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called an **orthonormal set**.

Theorem Any orthogonal set is linearly independent.

Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component **p** is the **orthogonal projection** of the vector **x** onto the subspace V_0 . The distance from **x** to the subspace V_0 is $||\mathbf{o}||$.

If
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$$
 is an orthogonal basis for V_0 then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.

Properties of the Gram-Schmidt process:

•
$$\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), \ 1 \le k \le n;$$

• the span of $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \ldots, \mathbf{x}_k$;

• \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for an inner product space V. Let

$$\mathbf{v}_{1} = \mathbf{x}_{1}, \quad \mathbf{w}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|},$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \langle \mathbf{x}_{2}, \mathbf{w}_{1} \rangle \mathbf{w}_{1}, \quad \mathbf{w}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|},$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{w}_{1} \rangle \mathbf{w}_{1} - \langle \mathbf{x}_{3}, \mathbf{w}_{2} \rangle \mathbf{w}_{2}, \quad \mathbf{w}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|},$$

$$\dots$$

$$\mathbf{v}_{n} = \mathbf{x}_{n} - \langle \mathbf{x}_{n}, \mathbf{w}_{1} \rangle \mathbf{w}_{1} - \dots - \langle \mathbf{x}_{n}, \mathbf{w}_{n-1} \rangle \mathbf{w}_{n-1},$$

$$\mathbf{w}_{n} = \frac{\mathbf{v}_{n}}{\|\mathbf{v}_{n}\|}.$$
Then $\mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{n}$ is an orthonormal basis for V

Problem. Let V₀ be a subspace of dimension k in Rⁿ. Let x₁, x₂,..., x_k be a basis for V₀. (i) Find an orthogonal basis for V₀. (ii) Extend it to an orthogonal basis for Rⁿ.

Approach 1. Extend $\mathbf{x}_1, \ldots, \mathbf{x}_k$ to a basis $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ for \mathbb{R}^n . Then apply the Gram-Schmidt process to the extended basis. We shall obtain an orthogonal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ for \mathbb{R}^n . By construction, $\operatorname{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k) = \operatorname{Span}(\mathbf{x}_1, \ldots, \mathbf{x}_k) = V_0$. It follows that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a basis for V_0 . Clearly, it is orthogonal.

Approach 2. First apply the Gram-Schmidt process to $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and obtain an orthogonal basis $\mathbf{v}_1, \ldots, \mathbf{v}_k$ for V_0 . Secondly, find a basis $\mathbf{y}_1, \ldots, \mathbf{y}_m$ for the orthogonal complement V_0^{\perp} and apply the Gram-Schmidt process to it obtaining an orthogonal basis $\mathbf{u}_1, \ldots, \mathbf{u}_m$ for V_0^{\perp} . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_m$ is an orthogonal basis for \mathbb{R}^n . Problem. Let Π be the plane in R³ spanned by vectors x₁ = (1,2,2) and x₂ = (-1,0,2).
(i) Find an orthonormal basis for Π.
(ii) Extend it to an orthonormal basis for R³.

 $\mathbf{x}_1, \mathbf{x}_2$ is a basis for the plane Π . We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors $\mathbf{x}_1, \mathbf{x}_2$, and $\mathbf{x}_3 = (0, 0, 1)$ form a basis for \mathbb{R}^3 because

$$\begin{vmatrix} 1 & 2 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0$$

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_1 = (1, 2, 2), \ \mathbf{x}_2 = (-1, 0, 2), \ \mathbf{x}_3 = (0, 0, 1)$: $\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2).$ $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1, 0, 2) - \frac{3}{9} (1, 2, 2)$ = (-4/3, -2/3, 4/3). $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2$ $=(0,0,1)-\frac{2}{0}(1,2,2)-\frac{4/3}{4}(-4/3,-2/3,4/3)$ = (2/9, -2/9, 1/9).

Now $\mathbf{v}_1 = (1, 2, 2)$, $\mathbf{v}_2 = (-4/3, -2/3, 4/3)$, $\mathbf{v}_3 = (2/9, -2/9, 1/9)$ is an orthogonal basis for \mathbb{R}^3 while $\mathbf{v}_1, \mathbf{v}_2$ is an orthogonal basis for Π . It remains to normalize these vectors.

 $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for Π . $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ is an orthonormal basis for \mathbb{R}^3 . **Problem.** Find the distance from the point $\mathbf{y} = (0, 0, 0, 1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1, -1, 1, -1)$, $\mathbf{x}_2 = (1, 1, 3, -1)$, and $\mathbf{x}_3 = (-3, 7, 1, 3)$.

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. The desired distance will be $|\mathbf{v}_4|$.

$$\begin{aligned} \mathbf{x}_{1} &= (1, -1, 1, -1), \ \mathbf{x}_{2} &= (1, 1, 3, -1), \\ \mathbf{x}_{3} &= (-3, 7, 1, 3), \ \mathbf{y} &= (0, 0, 0, 1). \end{aligned}$$
$$\mathbf{v}_{1} &= \mathbf{x}_{1} &= (1, -1, 1, -1), \\ \mathbf{v}_{2} &= \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} &= (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) \\ &= (0, 2, 2, 0), \\ \mathbf{v}_{3} &= \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2} \\ &= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) \\ &= (0, 0, 0, 0). \end{aligned}$$

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . *V* is a plane, not a 3-dimensional subspace. We should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\begin{split} \tilde{\mathbf{v}}_3 &= \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= (1/4, -1/4, 1/4, 3/4). \\ \tilde{\mathbf{v}}_3 &| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. \end{split}$$

Problem. Find the distance from the point $\mathbf{z} = (0, 0, 1, 0)$ to the plane Π that passes through the point $\mathbf{x}_0 = (1, 0, 0, 0)$ and is parallel to the vectors $\mathbf{v}_1 = (1, -1, 1, -1)$ and $\mathbf{v}_2 = (0, 2, 2, 0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\Pi = \Pi_0 + \mathbf{x}_0$.

Hence the distance from the point z to the plane Π is the same as the distance from the point $z - x_0$ to the plane Π_0 .

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{z} - \mathbf{x}_0$. This will yield an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. The desired distance will be $|\mathbf{w}_3|$.

$$\mathbf{v}_1 = (1, -1, 1, -1)$$
, $\mathbf{v}_2 = (0, 2, 2, 0)$, $\mathbf{z} - \mathbf{x}_0 = (-1, 0, 1, 0)$.

$$\mathbf{w}_1 = \mathbf{v}_1 = (1, -1, 1, -1),$$

 $\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \text{ as } \mathbf{v}_2 \perp \mathbf{v}_1.$

$$\begin{split} \mathbf{w}_{3} &= (\mathbf{z} - \mathbf{x}_{0}) - \frac{\langle \mathbf{z} - \mathbf{x}_{0}, \mathbf{w}_{1} \rangle}{\langle \mathbf{w}_{1}, \mathbf{w}_{1} \rangle} \mathbf{w}_{1} - \frac{\langle \mathbf{z} - \mathbf{x}_{0}, \mathbf{w}_{2} \rangle}{\langle \mathbf{w}_{2}, \mathbf{w}_{2} \rangle} \mathbf{w}_{2} \\ &= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \\ &= (-1, -1/2, 1/2, 0). \\ |\mathbf{w}_{3}| &= \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| (-2, -1, 1, 0) \right| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}. \end{split}$$

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$. The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

Remarks. • Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector.

• The zero vector is never considered an eigenvector.

Example.
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

Hence (1,0) is an eigenvector of A belonging to the eigenvalue 2, while (0,-2) is an eigenvector of A belonging to the eigenvalue 3.

Example.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Hence (1, 1) is an eigenvector of A belonging to the eigenvalue 1, while (1, -1) is an eigenvector of A belonging to the eigenvalue -1.

Vectors $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (1, -1)$ form a basis for \mathbb{R}^2 . Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L(\mathbf{x}) = A\mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$ is $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Let A be an $n \times n$ matrix. Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$ given by $L(\mathbf{x}) = A\mathbf{x}$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a nonstandard basis for \mathbb{R}^n and B be the matrix of the operator L with respect to this basis.

Theorem The matrix *B* is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of *A*. If this is the case, then the diagonal entries of the matrix *B* are the corresponding eigenvalues of *A*.

$$A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \iff B = \begin{pmatrix} \lambda_{1} & & O \\ & \lambda_{2} & \\ & & \ddots & \\ O & & & \lambda_{n} \end{pmatrix}$$