MATH 304
Linear Algebra

Lecture 22:
Eigenvalues and eigenvectors (continued).
Characteristic polynomial.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an nxn matrix. A number
A € R is called an eigenvalue of the matrix A if

Av = A\v| for a nonzero column vector v € R".

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue \.

Remarks. e Alternative notation:
eigenvalue = characteristic value,
eigenvector = characteristic vector.

e The zero vector is never considered an
eigenvector.



Diagonal matrices

Let A be an nxn matrix. Then A is diagonal if and
only if vectors e, ey, ..., e, of the standard basis
for R" are eigenvectors of A.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues:

A1 o

A= & ) = Aei = \e

0] An



Eigenspaces

Let A be an nxn matrix. Let v be an eigenvector
of A belonging to an eigenvalue .

Then Av=X\v — Av=(A)v = (A—-A)v=0.
Hence v € N(A — \l), the nullspace of the matrix
A— Al
Conversely, if x € N(A— Al) then Ax = Ax.

Thus the eigenvectors of A belonging to the
eigenvalue A are nonzero vectors from N(A — \/).

Definition. If N(A— Xl)# {0} then it is called
the eigenspace of the matrix A corresponding to
the eigenvalue .



How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar A,
the following statements are equivalent:

A is an eigenvalue of A,

N(A = AI) # {0},
the matrix A — A/l is singular,
det(A — \I) = 0.

Definition. det(A — Al) =0 is called the
characteristic equation of the matrix A.

Eigenvalues A of A are roots of the characteristic
equation. Associated eigenvectors of A are nonzero
solutions of the equation (A — A)x = 0.



a b
Example. A = (c d>'

det(A— \/) =

a— A\ b
c d— \

=(a—A)(d—A)— bc
=X —(a+d)\+ (ad — bc).
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Theorem. Let A= (a;) be an nxn matrix.
Then det(A — Al) is a polynomial of A of degree n:

det(A— M) = (=1)"N"+ A"+ +c, A+ ¢
Furthermore, (—1)""1ci = a1 +an+ -+ am

and ¢, = det A.

Definition. The polynomial p(A) = det(A — Al) is
called the characteristic polynomial of the matrix A.

Corollary Any nxn matrix has at most n
eigenvalues.



2 1
Example. A= (1 2).

. : 2 — 1
Characteristic equation: ‘ A

1 2—-A
(2—)\)2—1:0 — M =1, =3

o < ()0
= ()= o

The general solution is (—t, t) = t(—1,1), t € R.
Thus v; = (—1,1) is an eigenvector associated
with the eigenvalue 1. The corresponding
eigenspace is the line spanned by v;.
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(A—3)x=0 < (_1 _D @ B @
= (D)) =

The general solution is (t,t) = t(1,1), t € R.
Thus v, = (1,1) is an eigenvector associated with
the eigenvalue 3. The corresponding eigenspace is
the line spanned by v,.



2 1
Summary. A= <1 2).

e The matrix A has two eigenvalues: 1 and 3.

e The eigenspace of A associated with the
eigenvalue 1 is the line t(—1,1).

e The eigenspace of A associated with the
eigenvalue 3 is the line t(1,1).

e Eigenvectors v; = (—1,1) and v, = (1,1) of
the matrix A form an orthogonal basis for R?.
e Geometrically, the mapping x — Ax is a stretch

by a factor of 3 away from the line x +y =0 in
the orthogonal direction.



11 -1
Example. A=111 1
00 2
Characteristic equation:
1—-Xx 1 —1
1 1-Xx 1 |=0.
0 0 2—-2A

Expand the determinant by the 3rd row:

1—)\ 1
(2-2) 11—\

(1=AP—1)(2-A) =0 = —A2—-A\)2=0
— AN =0, =2

o



11 —1 X 0

Ax=0 <= [1 1 1 yl =10

00 2 z 0
Convert the matrix to reduced row echelon form:
11 -1 11 —1 110
11 1] — 100 2] — 10 0 1
00 2 00 2 00O

Ax =0 <— {X+y:0’
z=0.

The general solution is (—t, t,0) = t(—1,1,0),

t € R. Thus v; =(—1,1,0) is an eigenvector
associated with the eigenvalue 0. The
corresponding eigenspace is the line spanned by v;.



-1 1 -1\ [/x 0
(A-2x=0 «— 1 -1 1](y]=10
0 0 0/ \z 0
1 -1 1\ /x 0
<~ [0 00 y|l|=10] < x—y+2z=0.
0 00/ \z 0

The general solutionis x=t—s, y=t, z=s,
where t,s € R. Equivalently,

x=(t—s,t,s)=1t(1,1,0)+s(—1,0,1).

Thus v, =(1,1,0) and vz =(—1,0,1) are
eigenvectors associated with the eigenvalue 2.

The corresponding eigenspace is the plane spanned
by v, and vs.



11 -1
Summary. A=|11 1
00 2

e The matrix A has two eigenvalues: 0 and 2.

e The eigenvalue 0 is simple: the corresponding
eigenspace is a line.

e The eigenvalue 2 is of multiplicity 2: the
corresponding eigenspace is a plane.

e Eigenvectors v; = (—1,1,0), vo = (1,1,0), and
v3 = (—1,0,1) of the matrix A form a basis for R>.

e Geometrically, the map x +— Ax is the projection
on the plane Span(vy,vs) along the lines parallel to
vi with the subsequent scaling by a factor of 2.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector spaceand L:V — V
be a linear operator. A number \ is called an
eigenvalue of the operator L if |L(v) = Av| for a
nonzero vector v € V. The vector v is called an
eigenvector of L associated with the eigenvalue .

(If V is a functional space then eigenvectors are also
called eigenfunctions.)

If V =R" then the linear operator L is given by
L(x) = Ax, where A is an nxn matrix.

In this case, eigenvalues and eigenvectors of the
operator L are precisely eigenvalues and
eigenvectors of the matrix A.



Eigenspaces

Let L: V — V be a linear operator.
For any A € R, let V) denotes the set of all
solutions of the equation L(x) = Ax.

Then V), is a subspace of V since V) is the kernel
of a linear operator given by x — L(x) — Ax.

V\ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue .
In particular, A € R is an eigenvalue of L if and
only if V) # {0}.

If V) # {0} then it is called the eigenspace of L
corresponding to the eigenvalue \.



Example. V = C>*(R), D:V — V, Df =f".

A function f € C*(R) is an eigenfunction of the
operator D belonging to an eigenvalue X if

f'(x) = M(x) for all x € R.

It follows that f(x) = ce™, where c is a nonzero
constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e**.



Theorem |If vy, vy, ... v, are eigenvectors of a
linear operator L associated with distinct
eigenvalues A1, Ay, ..., Ak, then vy vy, ... v, are
linearly independent.

Corollary 1 If A, My, ..., A\ are distinct real
numbers, then the functions e, e’ ... eM* are
linearly independent.

Proof: Consider a linear operator

D : C>®(R) — C>*(R) given by Df = f',
Then eM* ... eMX are eigenfunctions of D
associated with distinct eigenvalues A1, ..., Ax.



Corollary 2 Let A be an nxn matrix such that
the characteristic equation det(A — A/) =0 has n
distinct real roots. Then R" has a basis consisting
of eigenvectors of A.

Proof: Let A\, Ay, ..., A, be distinct real roots of the
characteristic equation. Any J\; is an eigenvalue of A, hence
there is an associated eigenvector v;. By the theorem, vectors
Vi,Va,...,V, are linearly independent. Therefore they form a
basis for R”".

Corollary 3 Let A\, Ao, ..., A\ be distinct
eigenvalues of a linear operator L. For any

1 <i <k let 5; be a basis for the eigenspace
associated with the eigenvalue \;. Then the union
SiUS U---US is a linearly independent set.



Diagonalization

Suppose L: V — V is a linear operator on a vector space V
of dimension n.

Let vi,vs,...,v, be a basis for V and B be the matrix of the
operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors
V1,Vo,...,V, are eigenvectors of the operator L.

If this is the case, then the diagonal entries of the matrix B
are the corresponding eigenvalues of L:

A1 )

A2
L(V,‘) =\Vv; < B=

) An



Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional
vector space V. Let uq,uy,...,u, be a basis for V.
Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the
matrix A is called the characteristic polynomial
of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.

Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a
different basis vi,vs,...,v,. Then A= UBU!,
where U is the transition matrix from the basis
Vi,...,V, to uy,...,u,. We obtain
det(A — M) = det(UBU! — \I)
= det(UBU_1 — U()\I)U_l) = det(U(B — )\I)U_l)
= det(U) det(B — M) det(U™1) = det(B — \).



