
MATH 304

Linear Algebra

Lecture 25:
Complex eigenvalues and eigenvectors.

Orthogonal matrices.
Rotations in space.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that i2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is
z̄ = x − iy . The modulus of z is |z | =

√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2 − (iy)2 = x2 + y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x , y) ∈ R

2.

y

x0

r

φ
0

x = r cos φ, y = r sin φ =⇒ z = r(cos φ + i sin φ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then
z1z2 = r1r2e

i(φ1+φ2), z1/z2 = (r1/r2)e
i(φ1−φ2).



Fundamental Theorem of Algebra
Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with
multiplicities).

Equivalently, if

p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Complex eigenvalues/eigenvectors

Example. A =

(

0 −1
1 0

)

. det(A − λI ) = λ2 + 1.

Characteristic roots: λ1 = i and λ2 = −i .

Associated eigenvectors: v1 =

(

1
−i

)

and v2 =

(

1
i

)

.

(

0 −1
1 0

) (

1
−i

)

=

(

i

1

)

= i

(

1
−i

)

,

(

0 −1
1 0

) (

1
i

)

=

(

−i

1

)

= −i

(

1
i

)

.

v1, v2 is a basis of eigenvectors. In which space?



Complexification

Instead of the real vector space R
2, we consider a

complex vector space C
2 (all complex numbers are

admissible as scalars).

The linear operator f : R
2 → R

2, f (x) = Ax is
extended to a complex linear operator

F : C
2 → C

2, F (x) = Ax.

The vectors v1 = (1,−i) and v2 = (1, i) form a
basis for C

2.

C
2 is also a real vector space (of real dimension 4). The

standard real basis for C
2 is e1 = (1, 0), e2 = (0, 1),

ie1 = (i , 0), ie2 = (0, i). The matrix of the operator F with

respect to this basis has the block structure

(

A O

O A

)

.



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R

n:

x · y = x1y1 + x2y2 + · · · + xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ C

n:

x · y = x1y1 + x2y2 + · · · + xnyn.

If z = r + it (t, s ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.
Hence x · x = |x1|2 + |x2|2 + · · · + |xn|2 ≥ 0.
Also, x · x = 0 if and only if x = 0.

The norm is defined by ‖x‖ =
√

x · x.



Normal matrices

Definition. An n×n matrix A is called
• symmetric if AT = A;
• orthogonal if AAT = ATA = I , i.e., AT = A−1;
• normal if AAT = ATA.

Theorem Let A be an n×n matrix with real
entries. Then
(a) A is normal ⇐⇒ there exists an orthonormal
basis for C

n consisting of eigenvectors of A;
(b) A is symmetric ⇐⇒ there exists an orthonormal
basis for R

n consisting of eigenvectors of A.



Example. A =





1 0 1
0 3 0
1 0 1



.

• A is symmetric.
• A has three eigenvalues: 0, 2, and 3.
• Associated eigenvectors are v1 = (−1, 0, 1),
v2 = (1, 0, 1), and v3 = (0, 1, 0), respectively.

• Vectors 1√
2
v1,

1√
2
v2, v3 form an orthonormal

basis for R
3.



Theorem Suppose A is a normal matrix. Then for
any x ∈ C

n and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.
Also, Ax = λx ⇐⇒ Ax = λ x for any matrix A

with real entries.

Corollary All eigenvalues λ of a symmetric matrix
are real (λ = λ). All eigenvalues λ of an
orthogonal matrix satisfy λ = λ−1 ⇐⇒ |λ| = 1.



Why are orthogonal matrices called so?

Theorem Given an n×n matrix A, the following
conditions are equivalent:
(i) A is orthogonal: AT = A−1;
(ii) columns of A form an orthonormal basis for R

n;
(iii) rows of A form an orthonormal basis for R

n.

Proof: Entries of the matrix ATA are dot products of
columns of A. Entries of AAT are dot products of rows of A.

In particular, an orthogonal matrix is the transition
matrix from one orthonormal basis to another.



Example. Aφ =

(

cos φ − sin φ
sin φ cos φ

)

.

• AφAψ = Aφ+ψ

• A−1
φ = A−φ = AT

φ

• Aφ is orthogonal

• det(Aφ − λI ) = (cos φ − λ)2 + sin2 φ.

• Eigenvalues: λ1 = cos φ + i sin φ = e iφ,
λ2 = cos φ − i sin φ = e−iφ.

• Associated eigenvectors: v1 = (1,−i),
v2 = (1, i).

• Vectors 1√
2
v1 and 1√

2
v2 form an orthonormal

basis for C
2.



Consider a linear operator L : R
n → R

n, L(x) = Ax,
where A is an n×n matrix.

Theorem The following conditions are equivalent:
(i) |L(x)| = |x| for all x ∈ R

n;
(ii) L(x) · L(y) = x · y for all x, y ∈ R

n;
(iii) the matrix A is orthogonal.

Definition. A transformation f : R
n → R

n is called
an isometry if it preserves distances between
points: |f (x) − f (y)| = |x − y|.

Theorem Any isometry f : R
n → R

n can be
represented as f (x) = Ax + x0, where x0 ∈ R

n and
A is an orthogonal matrix.



Consider a linear operator L : R
n → R

n, L(x) = Ax,
where A is an n×n orthogonal matrix.

Theorem There exists an orthonormal basis for R
n

such that the matrix of L relative to this basis has
the diagonal block structure











D±1 O . . . O

O R1 . . . O
...

... . . . ...
O O . . . Rk











,

where D±1 is a diagonal matrix whose diagonal
entries are equal to 1 or −1, and

Rj =

(

cos φj − sin φj

sin φj cos φj

)

, φj ∈ R.



Classification of 2×2 orthogonal matrices:

(

cos φ − sin φ

sin φ cos φ

) (

−1 0
0 1

)

rotation reflection
about the origin in a line

Determinant: 1 −1

Eigenvalues: e iφ and e−iφ −1 and 1



Classification of 3×3 orthogonal matrices:

A =





1 0 0
0 cos φ − sin φ
0 sin φ cos φ



, B =





−1 0 0
0 1 0
0 0 1



,

C =





−1 0 0
0 cos φ − sin φ

0 sin φ cos φ



.

A = rotation about a line; B = reflection in a
plane; C = rotation about a line combined with
reflection in the orthogonal plane.

det A = 1, det B = det C = −1.

A has eigenvalues 1, e iφ, e−iφ. B has eigenvalues
−1, 1, 1. C has eigenvalues −1, e iφ, e−iφ.



Rotations in space

If the axis of rotation is oriented, we can say about
clockwise or counterclockwise rotations (with
respect to the view from the positive semi-axis).



Clockwise rotations about coordinate axes





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









1 0 0
0 cos θ sin θ
0 − sin θ cos θ







Problem. Find the matrix of the rotation by 90o

about the line spanned by the vector a = (1, 2, 2).
The rotation is assumed to be counterclockwise
when looking from the tip of a.

B =





1 0 0
0 0 −1
0 1 0



 is the matrix of (counterclockwise)
rotation by 90o about the x-axis.

We need to find an orthonormal basis v1, v2, v3 such that v1

points in the same direction as a. Also, the basis v1, v2, v3

should obey the same hand rule as the standard basis. Then
B will be the matrix of the given rotation relative to the basis
v1, v2, v3.



Let U denote the transition matrix from the basis
v1, v2, v3 to the standard basis (columns of U are
vectors v1, v2, v3). Then the desired matrix is
A = UBU−1.

Since v1, v2, v3 is going to be an orthonormal basis,
the matrix U will be orthogonal. Then U−1 = UT

and A = UBUT .

Remark. The basis v1, v2, v3 obeys the same hand
rule as the standard basis if and only if det U > 0.



Hint. Vectors a = (1, 2, 2), b = (−2,−1, 2), and
c = (2,−2, 1) are orthogonal.

We have |a| = |b| = |c| = 3, hence v1 = 1
3a,

v2 = 1
3b, v3 = 1

3c is an orthonormal basis.

Transition matrix: U = 1
3





1 −2 2
2 −1 −2
2 2 1



.

det U = 1
27

∣

∣

∣

∣

∣

∣

1 −2 2
2 −1 −2
2 2 1

∣

∣

∣

∣

∣

∣

= 1
27 · 27 = 1.

In the case det U = −1, we would change v3 to −v3,
or change v2 to −v2, or interchange v2 and v3.



A = UBUT

= 1
3





1 −2 2
2 −1 −2
2 2 1









1 0 0
0 0 −1
0 1 0



 · 1
3





1 2 2
−2 −1 2

2 −2 1





= 1
9





1 2 2
2 −2 1
2 1 −2









1 2 2
−2 −1 2

2 −2 1





= 1
9





1 −4 8
8 4 1

−4 7 4



.



U = 1
3





1 −2 2
2 −1 −2
2 2 1



 is an orthogonal matrix.

det U = 1 =⇒ U is a rotation matrix.

Problem. (a) Find the axis of the rotation.
(b) Find the angle of the rotation.

The axis is the set of points x ∈ R
n such that

Ux = x ⇐⇒ (U − I )x = 0. To find the axis, we
apply row reduction to the matrix

3(U − I ) = 3U − 3I =





−2 −2 2
2 −4 −2
2 2 −2



.







−2 −2 2
2 −4 −2
2 2 −2



 →





1 1 −1
2 −4 −2
2 2 −2



 →





1 1 −1
0 −6 0
2 2 −2





→





1 1 −1
0 −6 0
0 0 0



 →





1 1 −1
0 1 0
0 0 0



 →





1 0 −1
0 1 0
0 0 0





Thus Ux = x ⇐⇒
{

x − z = 0,
y = 0.

The general solution is x = t, y = 0, z = t, where
t ∈ R.

=⇒ d = (1, 0, 1) is the direction of the axis.



U = 1
3





1 −2 2
2 −1 −2
2 2 1





Let φ be the angle of rotation. Then the
eigenvalues of U are 1, e iφ, and e−iφ. Therefore

det(U − λI ) = (1 − λ)(e iφ − λ)(e−iφ − λ).

Besides, det(U − λI ) = −λ3 + c1λ
2 + c2λ + c3,

where c1 = tr U (the sum of diagonal entries).
It follows that

tr U = 1 + e iφ + e−iφ = 1 + 2 cos φ.

tr U = 1/3 =⇒ cos φ = −1/3 =⇒ φ ≈ 109.47o


