Linear Algebra

MATH 304

Lecture 8:
Elementary matrices.
Transpose of a matrix.
Determinants.

General results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:

- (i) A is invertible;
- (ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$;
- (iii) the row echelon form of A has no zero rows;
- (iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1} .

Theorem 3 For any $n \times n$ matrices A and B,

$$BA = I \iff AB = I.$$

Row echelon form of a square matrix:

invertible case

noninvertible case

Why does it work?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ 2b_1 & 2b_2 & 2b_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 + 3a_1 & b_2 + 3a_2 & b_3 + 3a_3 \\ c_1 & c_2 & c_3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \end{pmatrix}.$$

Proposition Any elementary row operation can be simulated as left multiplication by a certain matrix.

Elementary matrices

$$E=egin{pmatrix}1&&&&&O\ &\ddots&&&O\ &&1&&&&\ &&r&&&&\ &&&1&&&\ &O&&&\ddots&&\ &&&&1\end{pmatrix}$$
 row $\#i$

To obtain the matrix EA from A, multiply the ith row by r. To obtain the matrix AE from A, multiply the ith column by r.

Elementary matrices

$$E = \begin{pmatrix} 1 & & & & & & \\ \vdots & \ddots & & & & O \\ 0 & \cdots & 1 & & & & \\ \vdots & & \vdots & \ddots & & & \\ 0 & \cdots & r & \cdots & 1 & & \\ \vdots & & \vdots & & \vdots & \ddots & \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix} \quad \text{row } \# j$$

To obtain the matrix EA from A, add r times the ith row to the jth row. To obtain the matrix AE from A, add r times the jth column to the ith column.

Elementary matrices

To obtain the matrix EA from A, interchange the ith row with the jth row. To obtain AE from A, interchange the ith column with the jth column.

Why does it work?

Assume that a square matrix A can be converted to the identity matrix by a sequence of elementary row operations. Then

$$E_k E_{k-1} \dots E_2 E_1 A = I$$
,

where E_1, E_2, \ldots, E_k are elementary matrices simulating those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$B = E_k E_{k-1} \dots E_2 E_1 I = E_k E_{k-1} \dots E_2 E_1.$$

Thus BA = I, which implies that $B = A^{-1}$.

Transpose of a matrix

Definition. Given a matrix A, the **transpose** of A, denoted A^T , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A = (a_{ij})$ then $A^T = (b_{ij})$, where $b_{ij} = a_{ji}$.

Examples.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
,

$$\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^T = (7, 8, 9), \qquad \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}^T = \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}.$$

Properties of transposes:

• $(A_1 A_2 ... A_k)^T = A_k^T ... A_2^T A_1^T$

$$\bullet \ (A^T)^T = A$$

$$\bullet (A \mid B)^T =$$

$$\bullet \ (A+B)^T = A^T + B^T$$

$$\bullet (A+B)' =$$

$$\bullet (rA)^T = rA^T$$

$$(A+D)$$
 –

• $(AB)^T = B^T A^T$

 \bullet $(A^{-1})^T = (A^T)^{-1}$

Definition. A square matrix A is said to be **symmetric** if $A^T = A$.

For example, any diagonal matrix is symmetric.

Proposition For any square matrix A the matrices $B = AA^T$ and $C = A + A^T$ are symmetric.

Proof.

$$B^{T} = (AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T} = B,$$
 $C^{T} = (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = C.$

$$C^T = (A + A^T)^T = A^T + (A^T)^T = A^T + A = C.$$

Determinants

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix $A = (a_{ij})_{1 \le i,j \le n}$ is denoted det A or

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Principal property: det $A \neq 0$ if and only if a system of linear equations with the coefficient matrix A has a unique solution. Equivalently, det $A \neq 0$ if and only if the matrix A is invertible.

Definition in low dimensions

Definition.
$$\det(a) = a$$
, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

$$+: \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}.$$

$$-: \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}.$$

Examples: 2×2 matrices

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1, \qquad \begin{vmatrix} 3 & 0 \\ 0 & -4 \end{vmatrix} = -12,$$

$$\begin{vmatrix} -2 & 5 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 14,$$

$$\begin{vmatrix} -2 & 5 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 1$$
$$\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = 1, \qquad \begin{vmatrix} 0 & 0 \\ 4 & 1 \end{vmatrix} = 0,$$

$$\begin{vmatrix} -2 & 3 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 1$$
$$\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = 1, \qquad \begin{vmatrix} 0 & 0 \\ 4 & 1 \end{vmatrix} = 0,$$
$$\begin{vmatrix} -1 & 3 \\ -1 & 3 \end{vmatrix} = 0, \qquad \begin{vmatrix} 2 & 1 \\ 8 & 4 \end{vmatrix} = 0.$$

Examples: 3×3 matrices

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = 3 \cdot 0 \cdot 0 + (-2) \cdot 1 \cdot (-2) + 0 \cdot 1 \cdot 3 -$$
$$-0 \cdot 0 \cdot (-2) - (-2) \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 3 = 4 - 9 = -5,$$

$$\begin{vmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 + 4 \cdot 5 \cdot 0 + 6 \cdot 0 \cdot 0 -$$

 $-6 \cdot 2 \cdot 0 - 4 \cdot 0 \cdot 3 - 1 \cdot 5 \cdot 0 = 1 \cdot 2 \cdot 3 = 6.$