Linear Algebra

Wronskian.
The Vandermonde determinant.

Lecture 15:

MATH 304

The Vandermonde determinant.

Basis of a vector space.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0},$$

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly** independent. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=0.$$

A set $S \subset V$ is **linearly dependent** if one can find some distinct linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in S. Otherwise S is **linearly independent**.

Remark. If a set S (finite or infinite) is linearly independent then any subset of S is also linearly independent.

Theorem Vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in V$ are linearly dependent if and only if one of them is a linear combination of the other k-1 vectors.

Examples of linear independence.

- Vectors $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ in \mathbb{R}^3 .
- $\bullet \ \ \mathsf{Matrices} \ \ E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{, } E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{,}$

$$E_{21}=\begin{pmatrix}0&0\\1&0\end{pmatrix}$$
, and $E_{22}=\begin{pmatrix}0&0\\0&1\end{pmatrix}$.

• Polynomials $1, x, x^2, \dots, x^n, \dots$

Problem. Show that functions e^x , e^{2x} , and e^{3x} are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $ae^x + be^{2x} + ce^{3x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

 $ae^{x} + be^{2x} + ce^{3x} = 0$

Differentiate this identity twice:

$$ae^{x} + 2be^{2x} + 3ce^{3x} = 0,$$

 $ae^{x} + 4be^{2x} + 9ce^{3x} = 0.$

It follows that $A(x)\mathbf{v} = \mathbf{0}$, where

$$A(x) = \begin{pmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

$$= e^{x}e^{2x}e^{3x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 4 & 9 \end{vmatrix}$$
$$= e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 2 \\ 3 & 8 \end{vmatrix} = 2e^{6x} \neq 0.$$

 $\det A(x) = e^{x} \begin{vmatrix} 1 & e^{2x} & e^{3x} \\ 1 & 2e^{2x} & 3e^{3x} \\ 1 & 4e^{2x} & 9e^{3x} \end{vmatrix} = e^{x}e^{2x} \begin{vmatrix} 1 & 1 & e^{3x} \\ 1 & 2 & 3e^{3x} \\ 1 & 4 & 9e^{3x} \end{vmatrix}$

 $A(x) = \begin{pmatrix} e^x & e^{2x} & e^{3x} \\ e^x & 2e^{2x} & 3e^{3x} \\ e^x & Ae^{2x} & Qe^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$

Since the matrix A(x) is invertible, we obtain $A(x)\mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0} \implies a = b = c = 0$

Wronskian

Let $f_1, f_2, ..., f_n$ be smooth functions on an interval [a, b]. The **Wronskian** $W[f_1, f_2, ..., f_n]$ is a function on [a, b] defined by

$$W[f_1, f_2, \ldots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}.$$

Theorem If $W[f_1, f_2, ..., f_n](x_0) \neq 0$ for some $x_0 \in [a, b]$ then the functions $f_1, f_2, ..., f_n$ are linearly independent in C[a, b].

Theorem Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct real numbers. Then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

$$W[e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_k x}](x) = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \cdots & e^{\lambda_k x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \cdots & \lambda_k e^{\lambda_k x} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{k-1} e^{\lambda_1 x} & \lambda_2^{k-1} e^{\lambda_2 x} & \cdots & \lambda_k^{k-1} e^{\lambda_k x} \end{vmatrix}$$

$$=e^{(\lambda_1+\lambda_2+\cdots+\lambda_k)x}\left|egin{array}{cccc} 1&1&\cdots&1\ \lambda_1&\lambda_2&\cdots&\lambda_k\ dots&dots&\ddots&dots\ \lambda_1^{k-1}&\lambda_2^{k-1}&\cdots&\lambda_k^{k-1} \end{array}
ight|.$$

The Vandermonde determinant

Definition. The **Vandermonde determinant** is the determinant of the following matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix},$$

where $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Equivalently, $V = (a_{ij})_{1 \leq i,j \leq n}$, where $a_{ij} = x_i^{j-1}$.

Examples.

$$\bullet \quad \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix} = x_2 - x_1.$$

$$\bullet \quad \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix} = \begin{vmatrix} 1 & x_1 & 0 \\ 1 & x_2 & x_2^2 - x_1 x_2 \\ 1 & x_3 & x_3^2 - x_1 x_3 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 1 & x_2 - x_1 & x_2^2 - x_1 x_2 \\ 1 & x_3 - x_1 & x_3^2 - x_1 x_3 \end{vmatrix} = \begin{vmatrix} x_2 - x_1 & x_2^2 - x_1 x_2 \\ x_3 - x_1 & x_3^2 - x_1 x_3 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & x_2 - x_1 & x_2^2 - x_1 x_2 \\ 1 & x_3 - x_1 & x_3^2 - x_1 x_3 \end{vmatrix} = \begin{vmatrix} x_2 - x_1 & x_2^2 - x_1 x_2 \\ x_3 - x_1 & x_3^2 - x_1 x_3 \end{vmatrix}$$

$$= (x_2 - x_1) \begin{vmatrix} 1 & x_2 \\ x_3 - x_1 & x_2^2 - x_1 x_3 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1) \begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix}$$

$$|x_3 - x_1 |x_3 - x_1 |x_3 - x_1 |$$

$$= (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).$$

Theorem

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Corollary The Vandermonde determinant is not equal to 0 if and only if the numbers x_1, x_2, \ldots, x_n are distinct.

Let x_1, x_2, \ldots, x_n be distinct real numbers.

Theorem For any $b_1, b_2, \ldots, b_n \in \mathbb{R}$ there exists a unique polynomial $p(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$ of degree less than n such that $p(x_i) = b_i$, $1 \le i \le n$.

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_{n-1} x_1^{n-1} = b_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_{n-1} x_2^{n-1} = b_2 \\ \dots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_{n-1} x_n^{n-1} = b_n \end{cases}$$

 $a_0, a_1, \ldots, a_{n-1}$ are unknowns. The coefficient matrix is the Vandermonde matrix.

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a **basis**.

Suppose that a set $S \subset V$ is a basis for V.

"Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \cdots + r_k \mathbf{v}_k,$$

where $\mathbf{v}_1, \dots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \dots, r_k \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \dots + r_k \mathbf{v}_k = r'_1 \mathbf{v}_1 + r'_2 \mathbf{v}_2 + \dots + r'_k \mathbf{v}_k$$

$$\implies (r_1 - r'_1) \mathbf{v}_1 + (r_2 - r'_2) \mathbf{v}_2 + \dots + (r_k - r'_k) \mathbf{v}_k = \mathbf{0}$$

$$\implies r_1 - r'_1 = r_2 - r'_2 = \dots = r_k - r'_k = 0$$

Examples. • Standard basis for \mathbb{R}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots$

$$\mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$$

Indeed, $(x_1, x_2, \dots, x_n) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$

• Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

form a basis for
$$\mathcal{M}_{2,2}(\mathbb{R})$$
.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- Polynomials $1, x, x^2, \dots, x^{n-1}$ form a basis for $\mathcal{P}_n = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} : a_i \in \mathbb{R}\}.$
- The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.