
MATH 304–510 Spring 2017

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1. Find a quadratic polynomial p(x) such that p(−1) = p(3) = 6 and p′(2) =
p(1).

Let p(x) = a+ bx+ cx2. Then p(−1) = a− b+ c, p(1) = a+ b+ c, and p(3) = a+ 3b+ 9c. Also,
p′(x) = b+ 2cx so that p′(2) = b+ 4c. The coefficients a, b, and c are to be chosen so that







a− b+ c = 6,
a+ 3b+ 9c = 6,
b+ 4c = a+ b+ c

⇐⇒







a− b+ c = 6,
a+ 3b+ 9c = 6,
a− 3c = 0.

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row
echelon form using elementary row operations:





1 −1 1 6
1 3 9 6
1 0 −3 0



 →





1 0 −3 0
1 −1 1 6
1 3 9 6



 →





1 0 −3 0
0 −1 4 6
1 3 9 6





→





1 0 −3 0
0 −1 4 6
0 3 12 6



 →





1 0 −3 0
0 −1 4 6
0 0 24 24



 →





1 0 −3 0
0 −1 4 6
0 0 1 1





→





1 0 −3 0
0 1 −4 −6
0 0 1 1



 →





1 0 −3 0
0 1 0 −2
0 0 1 1



 →





1 0 0 3
0 1 0 −2
0 0 1 1



 .

We obtain that the system has a unique solution: a = 3, b = −2, and c = 1. Thus p(x) = x2 − 2x+3.

Problem 2. Let A =









1 1 0 0
1 1 1 −1
0 1 0 1
2 3 0 0









.

(i) Evaluate the determinant of the matrix A.

The determinant of A is easily evaluated using column expansions:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0
1 1 1 −1
0 1 0 1
2 3 0 0

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
2 3 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
2 3

∣

∣

∣

∣

= 1.

1



Another way to evaluate detA is to convert the matrix A into the identity matrix using elementary
row operations (see below). This requires much more work but we are going to do it anyway, to find
the inverse of A.

(ii) Find the inverse matrix A−1.

First we merge the matrix A with the identity matrix into one 4× 8 matrix

(A | I) =









1 1 0 0 1 0 0 0
1 1 1 −1 0 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









.

Then we apply elementary row operations to this matrix until the left part becomes the identity
matrix.

Subtract the first row from the second row:








1 1 0 0 1 0 0 0
1 1 1 −1 0 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









→









1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









.

Subtract 2 times the first row from the fourth row:








1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
2 3 0 0 0 0 0 1









→









1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 −2 0 0 1









.

Interchange the second row with the fourth row:









1 1 0 0 1 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 −2 0 0 1









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 1 0 1 0 0 1 0
0 0 1 −1 −1 1 0 0









.

Subtract the second row from the third row:








1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 1 0 1 0 0 1 0
0 0 1 −1 −1 1 0 0









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 0 1 2 0 1 −1
0 0 1 −1 −1 1 0 0









.

Interchange the third row with the fourth row:









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 0 1 2 0 1 −1
0 0 1 −1 −1 1 0 0









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 −1 −1 1 0 0
0 0 0 1 2 0 1 −1









.
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Add the fourth row to the third row:








1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 −1 −1 1 0 0
0 0 0 1 2 0 1 −1









→









1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 0 1 1 1 −1
0 0 0 1 2 0 1 −1









.

Subtract the second row from the first row:








1 1 0 0 1 0 0 0
0 1 0 0 −2 0 0 1
0 0 1 0 1 1 1 −1
0 0 0 1 2 0 1 −1









→









1 0 0 0 3 0 0 −1
0 1 0 0 −2 0 0 1
0 0 1 0 1 1 1 −1
0 0 0 1 2 0 1 −1









.

Finally the left part of our 4 × 8 matrix is transformed into the identity matrix. Therefore the
current right part is the inverse matrix of A. Thus

A−1 =









1 1 0 0
1 1 1 −1
0 1 0 1
2 3 0 0









−1

=









3 0 0 −1
−2 0 0 1
1 1 1 −1
2 0 1 −1









.

As a byproduct, we can evaluate the determinant of A. We have transformed A into the identity
matrix using elementary row operations. These included two row exchanges and no row multiplica-
tions. It follows that detA = det I = 1.

Problem 3. Consider a linear transformation F : R5 → R
2 given by

F (x1, x2, x3, x4, x5) = (x1 + x3 + x5, 2x1 − x2 + x4).

Find a basis for the kernel of F , then extend it to a basis for R5.

The kernel of F consists of all vectors x ∈ R
5 such that F (x) = 0. This is the solution set of the

following systems of linear equations:

{

x1 + x3 + x5 = 0
2x1 − x2 + x4 = 0

⇐⇒
{

x1 + x3 + x5 = 0
−x2 − 2x3 + x4 − 2x5 = 0

⇐⇒
{

x1 + x3 + x5 = 0
x2 + 2x3 − x4 + 2x5 = 0

⇐⇒
{

x1 = −x3 − x5
x2 = −2x3 + x4 − 2x5

The general solution of the system is

x = (−t1 − t3,−2t1 + t2 − 2t3, t1, t2, t3) = t1(−1,−2, 1, 0, 0) + t2(0, 1, 0, 1, 0) + t3(−1,−2, 0, 0, 1),

where t1, t2, t3 are arbitrary real numbers. We obtain that the kernel of F is spanned by vectors
v1 = (−1,−2, 1, 0, 0), v2 = (0, 1, 0, 1, 0), and v3 = (−1,−2, 0, 0, 1). The last three coordinates of these
vectors form the standard basis for R3. It follows that the vectors v1,v2,v3 are linearly independent.
Hence they form a basis for the kernel.
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To extend the basis for the kernel of F to a basis for R5, we need two more vectors. We can use
two vectors from the standard basis. For example, the vectors v1,v2,v3, e1, e2 form a basis for R

5.
To verify this, we show that a 5× 5 matrix with these vectors as columns has a nonzero determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 −1 1 0
−2 1 −2 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −1 0 −1
0 1 −2 1 −2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1.

Problem 4. Let v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 1). Let L : R3 → R
3 be a

linear operator on R
3 such that L(v1) = v2, L(v2) = v3, L(v3) = v1.

(i) Show that the vectors v1,v2,v3 form a basis for R3.

Let U be a 3× 3 matrix such that its columns are vectors v1,v2,v3:

U =





1 1 1
1 1 0
1 0 1



 .

To find the determinant of U , we subtract the second row from the first one and then expand by the
first row:

detU =

∣

∣

∣

∣

∣

∣

0 0 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1.

Since detU 6= 0, the vectors v1,v2,v3 are linearly independent. It follows that they form a basis for
R
3.

(ii) Find the matrix of the operator L relative to the basis v1,v2,v3.

Let A denote the matrix of L relative to the basis v1,v2,v3. By definition, the columns of A are
coordinates of vectors L(v1), L(v2), L(v3) with respect to the basis v1,v2,v3. Since L(v1) = v2 =
0v1 + 1v2 + 0v3, L(v2) = v3 = 0v1 + 0v2 + 1v3, L(v3) = v1 = 1v1 + 0v2 + 0v3, we obtain

A =





0 0 1
1 0 0
0 1 0



 .

(iii) Find the matrix of the operator L relative to the standard basis.

Let S denote the matrix of L relative to the standard basis for R3. We have S = UAU−1, where A
is the matrix of L relative to the basis v1,v2,v3 (already found) and U is the transition matrix from
v1,v2,v3 to the standard basis (the vectors v1,v2,v3 are consecutive columns of U):

A =





0 0 1
1 0 0
0 1 0



 , U =





1 1 1
1 1 0
1 0 1



 .
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To find the inverse U−1, we merge the matrix U with the identity matrix I into one 3× 6 matrix and
apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I
will be converted into U−1:

(U |I) =





1 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 0 −1 0 1





→





1 1 1 1 0 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 1 0 0 1 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 0 0 −1 1 1
0 −1 0 −1 0 1
0 0 −1 −1 1 0





→





1 0 0 −1 1 1
0 1 0 1 0 −1
0 0 1 1 −1 0



 = (I|U−1).

Thus

S = UAU−1 =





1 1 1
1 1 0
1 0 1









0 0 1
1 0 0
0 1 0









−1 1 1
1 0 −1
1 −1 0





=





1 1 1
1 0 1
0 1 1









−1 1 1
1 0 −1
1 −1 0



 =





1 0 0
0 0 1
2 −1 −1



 .

Alternative solution: Let S denote the matrix of L relative to the standard basis e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1). By definition, the columns of S are vectors L(e1), L(e2), L(e3). It is easy to
observe that e2 = v1 − v3, e3 = v1 − v2, and e1 = v2 − e2 = −v1 + v2 + v3. Therefore

L(e1) = L(−v1 + v2 + v3) = −L(v1) + L(v2) + L(v3) = −v2 + v3 + v1 = (1, 0, 2),

L(e2) = L(v1 − v3) = L(v1)− L(v3) = v2 − v1 = (0, 0,−1),

L(e3) = L(v1 − v2) = L(v1)− L(v2) = v2 − v3 = (0, 1,−1).

Thus

S =





1 0 0
0 0 1
2 −1 −1



 .

Problem 5. Let B =





1 1 1
1 1 1
1 1 1



.

(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. We obtain that

det(B − λI) =

∣

∣

∣

∣

∣

∣

1− λ 1 1
1 1− λ 1
1 1 1− λ

∣

∣

∣

∣

∣

∣

= (1− λ)3 − 3(1 − λ) + 2
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= (1− 3λ+ 3λ2 − λ3)− 3(1 − λ) + 2 = 3λ2 − λ3 = λ2(3− λ).

Hence the matrix B has two eigenvalues: 0 and 3.

(ii) Find a basis for R3 consisting of eigenvectors of B.

An eigenvector x = (x, y, z) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)x = 0. First consider the case λ = 0. We obtain that

Bx = 0 ⇐⇒





1 1 1
1 1 1
1 1 1









x
y
z



 =





0
0
0



 ⇐⇒ x+ y + z = 0.

The general solution is x = −t − s, y = t, z = s, where t, s ∈ R. Equivalently, x = t(−1, 1, 0) +
s(−1, 0, 1). Hence the eigenspace of B associated with the eigenvalue 0 is two-dimensional. It is
spanned by eigenvectors v1 = (−1, 1, 0) and v2 = (−1, 0, 1).

Now consider the case λ = 3. We obtain that

(B − 3I)x = 0 ⇐⇒





−2 1 1
1 −2 1
1 1 −2









x
y
z



 =





0
0
0





⇐⇒





1 0 −1
0 1 −1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x− z = 0,
y − z = 0.

The general solution is x = y = z = t, where t ∈ R. In particular, v3 = (1, 1, 1) is an eigenvector of B
associated with the eigenvalue 3.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B.
They are linearly independent since the matrix whose rows are these vectors is nonsingular:

∣

∣

∣

∣

∣

∣

−1 1 0
−1 0 1
1 1 1

∣

∣

∣

∣

∣

∣

= 3 6= 0.

It follows that v1,v2,v3 is a basis for R3.

(iii) Find an orthonormal basis for R3 consisting of eigenvectors of B.

It is easy to check that the vector v3 is orthogonal to v1 and v2. To transform the basis v1,v2,v3

into an orthogonal one, we only need to orthogonalize the pair v1,v2. Using the Gram-Schmidt
process, we replace the vector v2 by

u = v2 −
v2 · v1

v1 · v1
v1 = (−1, 0, 1) − 1

2
(−1, 1, 0) = (−1/2,−1/2, 1).

Now v1,u,v3 is an orthogonal basis for R3. Since u is a linear combination of the vectors v1 and v2,
it is also an eigenvector of B associated with the eigenvalue 0.

Finally, vectors w1 =
v1

‖v1‖
, w2 =

u

‖u‖ , and w3 =
v3

‖v3‖
form an orthonormal basis for R

3

consisting of eigenvectors of B. We get that ‖v1‖ =
√
2, ‖u‖ =

√

3/2, and ‖v3‖ =
√
3. Thus

w1 =
1√
2
(−1, 1, 0), w2 =

1√
6
(−1,−1, 2), w3 =

1√
3
(1, 1, 1).
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(iv) Find a diagonal matrix D and an invertible matrix U such that B = UDU−1.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B
associated with eigenvalues 0, 0, and 3, respectively. Since these vectors form a basis for R3, it follows
that B = UDU−1, where

D =





0 0 0
0 0 0
0 0 3



 , U =





−1 −1 1
1 0 1
0 1 1



 .

Here U is the transition matrix from the basis v1,v2,v3 to the standard basis (its columns are vectors
v1,v2,v3) while D is the matrix of the linear operator L : R3 → R

3, L(x) = Bx with respect to the
basis v1,v2,v3.

Problem 6. Let V be a subspace of R
4 spanned by vectors x1 = (1, 1, 0, 0), x2 =

(2, 0,−1, 1), and x3 = (0, 1, 1, 0).

(i) Find the distance from the point y = (0, 0, 0, 4) to the subspace V .
(ii) Find the distance from the point y to the orthogonal complement V ⊥.

The vector y is uniquely represented as y = p+o, where p ∈ V and o is orthogonal to V , that is,
o ∈ V ⊥. The vector p is the orthogonal projection of y onto the subspace V . Since (V ⊥)⊥ = V , the
vector o is the orthogonal projection of y onto the subspace V ⊥. It follows that the distance from the
point y to V equals ‖o‖ while the distance from y to V ⊥ equals ‖p‖.

The orthogonal projection p of the vector y onto the subspace V is easily computed when we have
an orthogonal basis for V . To get such a basis, we apply the Gram-Schmidt orthogonalization process
to the basis x1,x2,x3:

v1 = x1 = (1, 1, 0, 0), v2 = x2 −
x2 · v1

v1 · v1
v1 = (2, 0,−1, 1) − 2

2
(1, 1, 0, 0) = (1,−1,−1, 1),

v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2 = (0, 1, 1, 0) − 1

2
(1, 1, 0, 0) − −2

4
(1,−1,−1, 1) = (0, 0, 1/2, 1/2).

Now that v1,v2,v3 is an orthogonal basis for V we obtain

p =
y · v1

v1 · v1
v1 +

y · v2

v2 · v2
v2 +

y · v3

v3 · v3
v3 =

=
0

2
(1, 1, 0, 0) +

4

4
(1,−1,−1, 1) +

2

1/2
(0, 0, 1/2, 1/2) = (1,−1, 1, 3).

Consequently, o = y − p = (0, 0, 0, 4) − (1,−1, 1, 3) = (−1, 1,−1, 1). Thus the distance from y to the
subspace V equals ‖o‖ = 2 and the distance from y to V ⊥ equals ‖p‖ =

√
12 = 2

√
3.
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Problem 7. Suppose M is an n×n matrix. Prove that there exists a nonzero polynomial
p(x) of degree at most n2 such that p(M) = O.

All n×n matrices form a vector space of dimension n2. It follows that any n2 +1 matrices in this
space are linearly dependent. In particular, the matrices I,M,M2, . . . ,Mn2

are linearly dependent.
That is, a0I + a1M + a2M

2 + · · · + an2Mn2

= O for some scalars a0, a1, . . . , an2 not all equal to 0.
Then p(x) = a0 + a1x+ a2x

2 + · · ·+ an2xn
2

is the required polynomial.

Remark. According to the Cayley-Hamilton theorem, the characteristic polynomial of the matrix
M (which has degree n) can be chosen as p(x).

Problem 8. Consider a linear operator K : R3 → R
3 given by

K(x) = Cx, where C =
1

9





−4 7 4
1 −4 8
8 4 1



 .

(i) Explain why K is a rigid motion and, specifically, a rotation about an axis.

The matrix C is orthogonal, CCT = CTC = I. Therefore K is a rigid motion. According to the
classification of linear isometries in R

3, K is either a rotation about an axis, or a reflection in a plane,
or the composition of two. Since detC = 1 > 0, the transformation K preserves orientation. Hence
K is a rotation.

(ii) Find the axis of rotation.

The axis of rotation is the set of points fixed by the operator K. Hence a point x ∈ R
3 lies on the

axis if and only if K(x) = x or, equivalently, (C − I)x = 0. To solve this vector equation, we convert
the matrix C − I to reduced row echelon form:

C − I =
1

9





−13 7 4
1 −13 8
8 4 −8



 → 1

9





3 15 −12
1 −13 8
8 4 −8



 → 1

9





3 15 −12
9 −9 0
8 4 −8





→





1 5 −4
1 −1 0
2 1 −2



 →





1 −1 0
1 5 −4
2 1 −2



 →





1 −1 0
0 6 −4
2 1 −2



 →





1 −1 0
0 6 −4
0 3 −2





→





1 −1 0
0 0 0
0 3 −2



 →





1 −1 0
0 3 −2
0 0 0



 →





1 −1 0
0 1 −2/3
0 0 0



 →





1 0 −2/3
0 1 −2/3
0 0 0



 .

Here is the list of performed operations: add 2 times the third row to the first row, add the third row
to the second row, multiply the first row by 3 and the third row by 9/4, interchange the first row with
the second row, subtract the first row from the second row, subtract 2 times the first row from the
third row, subtract 2 times the third row from the second row, interchange the second row with the
third row, multiply the second row by 1/3, and add the second row to the first row.
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Therefore a point x = (x, y, z) lies on the axis if and only if x − 2
3z = y − 2

3z = 0. The general
solution of the system is x = y = 2

3t, z = t, where t ∈ R. Thus the axis of rotation is the line spanned
by the vector (2, 2, 3).

(iii) Find the angle of rotation.

Since K is a rotation about an axis, the matrix C is similar to the matrix

E =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 ,

where φ is the angle of rotation. Similar matrices have the same trace (the sum of diagonal entries) as
similar matrices have the same characteristic polynomial and the trace is one of its coefficients. Since
trace(C) = −7/9 and trace(E) = 1 + 2 cosφ, we obtain 1 + 2 cosφ = −7/9. Then cosφ = −8/9 so
that φ = arccos(−8/9).

Problem 9. Let P be a square matrix. Assuming P is diagonalizable, prove that
det(expP ) = etrace(P ).

First consider the case when P is diagonal, P = diag(a1, a2, . . . , an). Then the matrix exponential
eP is also diagonal, namely, eP = diag(ea1 , ea2 , . . . , ean). The determinant of a diagonal matrix equals
the product of its diagonal entries. Hence det(eP ) = ea1ea2 . . . ean = ea1+a2+···+an = etrace(P ).

Now assume that the matrix P is diagonalizable. Then it is similar to a diagonal matrix, that is,
P = UQU−1, where Q is diagonal. It follows that eP = UeQU−1. In particular, eP is similar to eQ.
By the above, det(eQ) = etrace(Q). Since similar matrices have the same determinant and trace, we
obtain det(eP ) = det(eQ) and trace(P ) = trace(Q). Hence det(eP ) = etrace(P ).
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