MATH 304
Linear Algebra

Lecture 14:

Span (continued).
Linear independence.



Span

Let S be a subset of a vector space V.

Definition. The span of the set S is the smallest
subspace W C V that contains S. If S is not
empty then W = Span(S) consists of all linear
combinations ‘rlvl + vy + -+ rkvk\ such that
Vi,...,Vvy €S and n,...,r € R.

We say that the set S spans the subspace W or
that S is a spanning set for W.



Problem Let v; =(1,2,0), v, =(3,1,1), and
w = (4,—7,3). Determine whether w belongs to
Span(vy, v2).

We have to check if there exist r, » € R such that
W = Vv + nVvy. This vector equation is equivalent
to a system of linear equations:

4 1 3 4 =n+3n
—T71l=nl2]|+n|l < —7 =2n+n

3 0 1 3=0n+n
The system has a unique solution: rn = —5, rn = 3.

Thus w = —bv; 4+ 3vy isin Span(vy, vp).



Problem Let v; = (2,5) and v, = (1,3). Show
that {vi,v,} is a spanning set for R?.

Take any vector w = (a, b) € R?>. We have to
check that there exist r, » € R such that

2n+nmrn=a

W = nVi+hnvy < { 5r. + 3, = b

Coefficient matrix: C = (? ;) detC =1#0.
Since the matrix C is invertible, the system has a

unique solution for any a and b.
Thus Span(vy,vy) = R?.



Problem Let v; = (2,5) and v, = (1,3). Show
that {vi, vy} is a spanning set for R?.

Alternative solution: First let us show that vectors
e; = (1,0) and e; = (0,1) belong to Span(vy, vy).

€1 = NVi+hVy < { n+r N {rl

5n+3rn =0 rn = -5
_ 2n+nrn=20 n=-—1
€ = nVi+nvy < { 5r + 3r = 1 {rz _ 9

Thus e; =3v; —bvy, and ey = —vy + 2vs.
Then for any vector w = (a, b) € R? we have
w = ae; + be; = a(3vy — bvy) + b(—vy + 2vy)
= (3a — b)vi + (—5a+ 2b)v,.



Problem Let v; = (2,5) and v, = (1,3). Show
that {vi, vy} is a spanning set for R2.

Remarks on the alternative solution:

Notice that R? is spanned by vectors e; = (1,0)

and e; = (0, 1) since (a, b) = ae; + be,.

This is why we have checked that vectors e; and e;

belong to Span(vi,vy). Then

e, e € Span(vy,vp) = Span(e;, ;) C Span(vy, vy)

— R? C Span(vi,vp) = Span(vy,vy) = R?.

In general, to show that Span(S;) = Span($5,),

it is enough to check that S; C Span(S;) and
S, C Span($;).



More properties of span

Let So and S be subsets of a vector space V.
e SoCS = Span(Sy) C Span(S).
e Span(Sy)) =V and Sy C S = Span(S) = V.

o If vg,vi,...,V, is a spanning set for V' and vg
is a linear combination of vectors vy, ..., v, then
Vi,...,V is also a spanning set for V.

Indeed, if vg = vy + - -+ rwvg, then

toVg + t1vy + - - - + LV = (tol’l + tl)Vl + -4 (tol’k + tk)Vk.
e Span(SpU {vg}) = Span(Sp) if and only if

Vo € Span(Sp).

If vo € Span(Sy), then SoU {vo} C Span(Sp), which implies
Span(So U {vo}) C Span(Sp). On the other hand,
Span(Sy) C Span(Sp U {vo}).



Linear independence

Definition. Let V be a vector space. Vectors
Vi,Vo,...,Vx € V are called linearly dependent
if they satisfy a relation

nvi—+ vy + -+ nve =0,

where the coefficients ri,...,r € R are not all
equal to zero. Otherwise vectors vi,V,, ...,V are
called linearly independent. That is, if
nvi+nvo+ - -4+nvy=0 — n=---=r=0.

A set S C V is linearly dependent if one can find
some distinct linearly dependent vectors vy, ..., vk
in S. Otherwise S is linearly independent.



Examples of linear independence

e Vectors e; =(1,0,0), e, =(0,1,0), and
es = (0,0,1) in R3.

xe;+ye,+ze3=0 = (x,y,2)=0

e Matrices Ej; = ((1) 8) Eip = (8 é)

00 00
E21— <1 O), and E22— (O 1)

aEi1 + bEyy + cExy + dExy = 0 — (i Z) =0

= a=b=c=d=0



Examples of linear independence

e Polynomials 1,x,x? ..., x".

ag+ a1x + apx®> + -+ a,x" =0 identically
= g3,=0 for 0<i<n

e The infinite set {1,x,x2,...,x",...}.

Y

e Polynomials p;(x) =1, po(x) =x—1, and
po(x) = (x — 1)

a1p1(x) + axpa(x) + asps(x) = a1 + ax(x — 1) + a3z(x — 1)? =
= (a1 — a + a3) + (a2 — 2a3)x + asx’.

Hence aipi(x)+ axpa(x) + asps(x) = 0 identically

— g —a&ataz=a —2a3=a3=0

— g =a=a=0



