MATH 304
Linear Algebra

Lecture 26:
Eigenvalues and eigenvectors (continued).
Basis of eigenvectors.
Diagonalization.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and

L:V — V be a linear operator. A number X is
called an eigenvalue of the operator L if

L(v) = Av| for a nonzero vector v € V. The
vector v is called an eigenvector of L associated
with the eigenvalue \.

The set V), of all eigenvectors of L associated with
the eigenvalue A along with the zero vector is a
subspace of V. It is called the eigenspace of L
corresponding to the eigenvalue .



Example. V = C>*(R), D:V — V, Df =f"

A function f € C®(R) is an eigenfunction of the
operator D belonging to an eigenvalue A if

f'(x) = Mf(x) forall x € R.

It follows that f(x) = ce™, where c is a nonzero
constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e**.



Example. V = C>®(R), L:V =V, Lf=f".

Lf = Af < f"(x) = M(x) =0 forall x€R.

It follows that each A € R is an eigenvalue of L and
the corresponding eigenspace V) is two-dimensional.
Note that L=D?, hence Df = uf = Lf = p?f.

If A >0 then V), = Span(e, e ), where
=

If A <0 then V) = Span(sin(ux), cos(ux)), where
TERVESY

If A =0 then V), = Span(1,x).



Let V be a vector space and L: V — V be a linear
operator.

Proposition 1 If v € V is an eigenvector of the
operator L then the associated eigenvalue is unique.

Proof: Suppose that L(v) = A;v and L(v) = Apv. Then
AMV=Xv = (M1 —XQv=0 = M — X =0 = )\ =\,

Proposition 2 Suppose v; and v, are eigenvectors
of L associated with different eigenvalues A\; and \,.
Then v; and v, are linearly independent.

Proof: For any scalar t # 0 the vector tv; is also an
eigenvector of L associated with the eigenvalue A\;. Since

A2 # Ap, it follows that v, # tvy;. That is, v, is not a scalar
multiple of vy. Similarly, v; is not a scalar multiple of v,.



Let L:V — V be a linear operator.

Proposition 3 If vy, v, and v3 are eigenvectors of
L associated with distinct eigenvalues A1, A\, and
A3, then they are linearly independent.
Proof: Suppose that t;v; + tovs + t3v3 = 0 for some
t1, t,t3 € R. Then
L(tyvy + tvp + t3v3) = 0,
tiL(vy) + toL(v2) + t3L(v3) =0,
tiA1vy + b Aavs + t3Azvs = 0.

It follows that

t1A1V1 + tAavo + t3Asvs — A3(tvy + tovo + tsv3) = 0

= t1(A1 — M3)v1 + B(Aa — A3)va = 0.

By the above, v; and v, are linearly independent.
Hence ti(A1 —A3) =t(M—X3) =0 = t; =1 =0
Then t3 =0 as well.



Theorem If vy, vy, ..., v, are eigenvectors of a
linear operator L associated with distinct
eigenvalues A1, Ao, ..., Ak, then vy, vy, ... v, are
linearly independent.

Corollary If A, Ay, ..., A are distinct real
numbers, then the functions e’*, e’ ... eM* are
linearly independent.

Proof: Consider a linear operator D : C*(R) — C>*(R)
given by Df = f'. Then e’*, ... eMX are eigenfunctions of

D associated with distinct eigenvalues Ay, ..., . By the
theorem, the eigenfunctions are linearly independent.



Basis of eigenvectors

Let V be a finite-dimensional vector space and
L:V — V be a linear operator. Let vq,vy, ..., v,
be a basis for V and A be the matrix of the
operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors vi, Vo, ...,V, are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

A1 0]

L(V,‘) = )\,’V,‘ — A= A2

0] An



How to find a basis of eigenvectors

Theorem If vy, v,, ..., v, are eigenvectors of a linear
operator L associated with distinct eigenvalues A1, o, ..., A,
then vy, vy, ... v, are linearly independent.

Corollary 1 Suppose Ai, Ao, ..., A are all eigenvalues of a

linear operator L:V — V. Forany 1</ <k, letS; bea
basis for the eigenspace associated to the eigenvalue \;. Then
these bases are disjoint and the union S =5 US U---U S,
is a linearly independent set.

Moreover, if the vector space V' admits a basis consisting of
eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an nxn matrix such that the
characteristic equation det(A — A/) = 0 has n distinct roots.
Then (i) there is a basis for R" consisting of eigenvectors of A;
(i) all eigenspaces of A are one-dimensional.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal;
e there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an nxn matrix. Then the following
conditions are equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU7!, where the matrix B is diagonal;

e there exists a basis for R” formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



2 1
Example. A = <1 2).

e The matrix A has two eigenvalues: 1 and 3.
e The eigenspace of A associated with the
eigenvalue 1 is the line spanned by v; = (—1,1).
e The eigenspace of A associated with the
eigenvalue 3 is the line spanned by v, = (1,1).
e Eigenvectors v; and v, form a basis for R?.

Thus the matrix A is diagonalizable. Namely,
A = UBU™!, where

(9 (1)

Notice that U is the transition matrix from the basis vi,v, to
the standard basis.



11 -1
Example. A=11 1 1

00 2
e The matrix A has two eigenvalues: 0 and 2.
e The eigenspace for 0 is one-dimensional; it has a basis
Sy = {v1}, where v; =(—1,1,0).
e The eigenspace for 2 is two-dimensional; it has a basis
Sy = {va,v3}, where v, =(1,1,0), v3 = (—1,0,1).

e The union S; U S, = {vy1,vy,v3} is a linearly independent
set, hence it is a basis for R3.

Thus the matrix A is diagonalizable. Namely, A= UBU™!,
where

000 -1 1 -1
B=1020 U= 11 0
0 0 2 00 1



