MATH 304
Linear Algebra

Lecture 32:
Review for Test 2.



Topics for Test 2
Coordinates and linear transformations (Leon 3.5, 4.1-4.3)

Coordinates relative to a basis
Change of basis, transition matrix
Linear transformations

Matrix of a linear transformation
Change of basis for a linear operator

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

e Eigenvalues, eigenvectors, eigenspaces
e Characteristic polynomial
e Diagonalization

Orthogonality (Leon 5.1-5.3, 5.5-5.6)

Orthogonal complement

Orthogonal projection

Least squares problems

The Gram-Schmidt orthogonalization process



Sample problems for Test 2

Problem 1. Consider a linear operator L : R3 — R3 given
by L(u) = (u-vy)vy, where vi =(1,2,—1) and

vo = (1,2,3).

(i) Find a matrix M such that L(u) = Mu for any column
vector u € R3.

(ii) Find all eigenvalues and eigenvectors of L.

Problem 2. Let V be a subspace of F(RR) spanned by
functions e* and e™. Let L be a linear operator on V such

3 2
e *. Find the matrix of L relative to the basis

coshx = 1(e*+ e7™), sinhx = L(e¥ — ™).

that (_2 _1) is the matrix of L relative to the basis e*,



1
1
0 21
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Problem 3. lLet A= 11

(i) Find all eigenvalues of the matrix A.

(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.

(iv) Find all eigenvalues of the matrix A2.

Problem 4. Find a linear polynomial which is the best least
squares fit to the following data:

X H —2
Fx) | -3

‘_
[—2]1]2]5



Problem 5. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
v+

Problem 6. Let L:V — W be a linear mapping of a
finite-dimensional vector space V to a vector space W. Show
that

dim Range(L) 4+ dimker(L) = dim V.

Problem 7. Prove that every subspace of R” is the solution
set for some system of linear homogeneous equations in n
variables.



Problem 1. Consider a linear operator L : R3 — R3 given
by L(u) = (u-vy)vy, where vi =(1,2,—1) and

vo = (1,2,3).

(i) Find a matrix M such that L(u) = Mu for any column
vector u € R3.

(ii) Find all eigenvalues and eigenvectors of L.

M is the matrix of the operator L relative to the standard
basis e, ey, e3. Hence consecutive columns of M are vectors
L(e1), L(ez), L(e3). We obtain that L(e;) = vy,

L(E2) = 2V2, L(E3) = —Vs.

1 2 -1 1
Hence M=[2 4 -2 | =|2](1,2,-1).
3 6 -3 3

Since L(u) is always parallel to vy, it follows that L has two
eigenspaces: the kernel, which is vi-, and the line spanned by
vyo. We have L(vp) = 2v, so that the eigenvalues are 0 and 2.



Problem 2. Let V be a subspace of F(RR) spanned by

functions €* and e™*. Let L be a linear operator on V such

2 -1\ . . . .
that ) is the matrix of L relative to the basis €%,

-3 2
e *. Find the matrix of L relative to the basis

coshx = 2(e¥ 4 ™), sinhx = 1(e* — e™).

X

Let A denote the matrix of the operator L relative to the basis
e*, e (which is given) and B denote the matrix of L relative
to the basis cosh x, sinh x (which is to be found). By
definition of the functions cosh x and sinh x, the transition

. . . 1 1
matrix from cosh x, sinhx to e*, e ™™ is U = % ( )

1 -1
It follows that B = U~YAU. We obtain that

o= (1) (5 2)a6 ) -0 )



1 20
Problem 3. LetA=]1 11
0 21

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A — Al) = 0. We obtain that

1-X 2 0

det(A—A)=| 1 1-x 1
0 21—\

=(1=X°=21-X)—-201-XN)=(1-XN)(1-1)?>-4)
=(1-N(1-N=-2)((1=X)+2)=-A=1)A+1)(A—3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.



Problem 3. Let A=

O
N =N
== o

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y, z) of the matrix A associated with
an eigenvalue X is a nonzero solution of the vector equation

1-X 2 0 X 0
(A-Av=0 1 1-x 1 y|l=10
0 2 1-A z 0

To solve the equation, we convert the matrix A — Al to
reduced row echelon form.



First consider the case A\ = —1. The row reduction yields

2 20 110

A+l=112 1] =1 21

0 2 2 0 2 2
110 110 1 0 -1
1011} —=1011] —=(01 1
0 2 2 00O 00 0

Hence
x—z=0,
A+llv=0 — {y+z:0.

The general solution is x =t, y = —t, z=1t, where t € R.
In particular, v; = (1,—1,1) is an eigenvector of A associated

with the eigenvalue —1.



Secondly, consider the case A = 1. The row reduction yields

0 20 1 01 1 01 1 01
A-I=1 0 1] —=]10 2 0] =10 10| —=(0 1 0].
0 20 0 20 0 20 0 00

Hence

- x+z=0,
A-Illv=0 = {yzo‘
The general solution is x = —t, y =0, z=1t, where t € R.

In particular, v, = (—1,0,1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

-2 2 0 1 -1 0 1 -1
A-3] = 1 -2 1] =11 -2 1] —=(0 -1
0 2 =2 0 2 =2 0 2
1 -1 0 1 -1 0 1 0 -1
— 10 1 -1] — 10 1 -1] —10 1 -1
0 2 =2 0 0 0 00 0
Hence
x—z=0,
(A-3llv=0 — {y—z:O.

The general solutionis x =t, y =t, z=1t, where t € R.
In particular, v3 = (1,1,1) is an eigenvector of A associated
with the eigenvalue 3.

0
1
-2



Problem 3. Let A=

O =
N =N
== o

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3
formed by its eigenvectors.

Namely, the vectors v; = (1,—-1,1), v = (—1,0,1), and

vz = (1,1,1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that vy, v,,vs3 is a basis for R3.

Alternatively, the existence of a basis for R® consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 3. Let A=

O =
N =N
== O

(iv) Find all eigenvalues of the matrix A2.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue A, thatis, v # 0 and Av = Av. Then

A%v = A(Av) = A(Av) = A(Av) = A\(A\v) = Nv.

Therefore v is also an eigenvector of the matrix A? and the
associated eigenvalue is \2. We already know that the matrix
A has eigenvalues —1, 1, and 3. It follows that A? has
eigenvalues 1 and 9.

Since a 3x3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A%2. One reason is that the eigenvalue 1 has
multiplicity 2.



Problem 4. Find a linear polynomial which is the best least
squares fit to the following data:

[0]1]2
[1[2]5

We are looking for a function f(x) = ¢ + cx, where ¢, &
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables ¢;
and ¢:

X 1

| =2| -
O] =3[ -2

(o] —2C2 = —3,
G — 6 = —2,
Cl—].,
C+ G = 2,
C1—|—2C2 =b.

This system is inconsistent.



We can represent the system as a matrix equation Ac =y,
where

1 -2 -3
1 -1 )
A=|1 o], c_(cl), y=| 1
11 c2 2
1 2 5

The least squares solution ¢ of the above system is a solution
of the normal system AT Ac = ATy:

1 -2 -3
(1 1111)1_(1)<c1)<1 1111)_5
2 -1012)f; [|\a -2 -1 0 1 2 5
1 2 5

= (n)E)- (o) = (82

Thus the function f(x) = % + 2x is the best least squares fit
to the above data among linear polynomials.






Problem 5. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to
vectors Xj, X, and obtain an orthogonal basis vy, v, for the
subspace V:

Vi = X1 = (]., ]., ]., 1),

Xo> - V71
Vo = Xo—

4
vi=(1,0,3,0)-5(L,1,1,1) = (0,~1,2,-1).

Vi -V

Then we normalize vectors vi,v, to obtain an orthonormal
basis wy,w, for V:

il =2 = wi =g =3(1,1,1,1)




Problem 5. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(ii) Find an orthonormal basis for the orthogonal complement
v+

Since the subspace V is spanned by vectors (1,1,1,1) and
(1,0,3,0), it is the row space of the matrix

1111
A= (1 0 3 0) ’
Then the orthogonal complement V* is the nullspace of A.

To find the nullspace, we convert the matrix A to reduced row
echelon form:

1111_>1030_>10 30
1030 1111 01 -2 1)°



Hence a vector (xi,xo, X3, x3) € R* belongs to V* if and only
if

X1

10 30 x| (0
01 -2 1 x3 | \0O
Xa
x1+3x3=0 x1 = —3x3
{x2—2x3—|—x4:0 — {x2:2x3—x4

The general solution of the system is (x, X2, X3, X3) =
= (—3t,2t — s, t,s) = t(—3,2,1,0) + s(0,—1,0,1), where
t,s e R.

It follows that V* is spanned by vectors x3 = (0, —1,0,1)
and x4 = (-3,2,1,0).



The vectors x3 = (0,—1,0,1) and x4 =(—3,2,1,0) form a

basis for the subspace V.
It remains to orthogonalize and normalize this basis:

V3 = X3 = (0, —].,0, ].),

X4 * V3 —2
= Xq — =(-3,2,1,0) — —(0,-1,0,1
Vy X4 Vs - Vs ( 777) 2(7 77)
=(-3,1,1,1),

HV3” = \/§ = W3 = ‘V3” = T(O 1 0 1)

HV4|| = \/E = 2\/§ = W4 = ::” = 2—\1/§(_37 ]-7 17 ]-)

Thus the vectors ws = %(O, —1,0,1) and
wy = 2—\1/§(—3, 1,1,1) form an orthonormal basis for V+.



Problem 5. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
v+

Alternative solution: First we extend the set x;,Xx, to a basis
X1, X2, X3, X4 for R*. Then we orthogonalize and normalize
the latter. This yields an orthonormal basis wy, w,, w3, wy
for R*.

By construction, wy, w» is an orthonormal basis for V.
It follows that ws, w, is an orthonormal basis for V.



The set x; = (1,1,1,1), x» = (1,0,3,0) can be extended to
a basis for R* by adding two vectors from the standard basis.

For example, we can add vectors e; = (0,0,1,0) and

es = (0,0,0,1). To show that xi,x,,e3, e, is indeed a basis
for R*, we check that the matrix whose rows are these vectors
is nonsingular:

0010 00 1
0 001



To orthogonalize the basis xi, x5, €3,€e4, we apply the
Gram-Schmidt process:

Vi = X1 = (]., ]., ]., 1),

v = xz—:j :1v1 — (1,0,3,0)—%(1,1,1,1) = (0, -1,2, —1),
V3 = €3 — =k VIvl - G V2V2 = (0707 170) - %(17 L1, 1)_
ViV V2 - Vo
_%(07 _1727 _1) = (_%7 %7 ]__127 ]__12) = %(_37 ]-7 17 ]-)r
Vo= e — ey - Vlv1 . ey - Vzv2 . €y - V3v3 _ (0’070’ 1)_
ViV V2 - Vo V3 - V3
—1(1,1,1,1) = 2(0,-1,2,-1) — {35 - (-3, 1, 1,1) =

=(0,-1,0,3) = 3(0,-1,0,1).

)2



It remains to normalize vectors v; = (1,1,1,1),

Y ) Y

v = (0,-1,2,-1), vs = £(-3,1,1,1), vy = 1(0,~1,0,1):

1
2

Thus wy, ws is an orthonormal basis for V' while w3, wy is an
orthonormal basis for V+.



Thus for any vector y € R* the orthogonal
projection of y onto the subspace V is

p=(y wi)wi+ (y-wa)ws
and the orthogonal projection of y onto V* is
0 = (y-ws3)ws+ (Y- wg)ws.

Also, the distance fromy to V is ||y — p|| = ||o||
and the distance from y to V* is |ly —o|| = ||p||.



Problem 6. Let L: V — W be a linear mapping of a
finite-dimensional vector space V to a vector space W. Show
that dim Range(L) + dimker(L) = dim V.

The kernel ker(L) is a subspace of V. It is finite-dimensional
since the vector space V is.

Take a basis vy, Vs, ..., v, for the subspace ker(L), then
extend it to a basis vi,Vo, ..., Vi, Uy, Uy, ..., U, for the entire
space V.

Claim Vectors L(uy), L(uy),...,L(uy,) form a basis for the
range of L.

Assuming the claim is proved, we obtain
dimRange(L) = m, dimker(L) =k, dimV =k+m.



Claim Vectors L(u;), L(uy),...,L(u,) form a basis for the
range of L.

Proof (spanning): Any vector w € Range(L) is represented
as w = L(v), where ve V. Then

V = Vi + QoVp + - -+ + Vi + Brug + Boo + -+ - + By,
for some «;, B; € R. It follows that
w = L(v) =aiL(vi)+---Faxl(vi)+FiL(ur)+- - -+ Bml(unm)
= Gil(uy) + -+ -+ Bml(uny).

Note that L(v;) = 0 since v; € ker(L).
Thus Range(L) is spanned by the vectors L(uy), ..., L(upn).



Claim Vectors L(uy), L(uy),...,L(uy,) form a basis for the
range of L.

Proof (linear independence): Suppose that
tlL(Ul) + tzL(UQ) + -4 tmL(Um) =0
for some t; € R. Let u= tju; + tbuy + - -+ + t,u,,. Since
L(u) = t;L(uy) + toL(u2) + - - - + tL(uy,) =0,

the vector u belongs to the kernel of L. Therefore
U= 5Vi + SVp + - - + sV, for some s; € R. It follows that

tiup+buy+- -+t — SV —SHVo— - - — S5 Vi = UuU—U = 0
Linear independence of vectors vi,...,Vv, ug,...,u, implies
that t; =---=1t, =0 (aswell as sy =--- =5, =0).

Thus the vectors L(uy), L(uz), ..., L(us,) are linearly

independent.



Problem 7. Prove that every subspace of R” is the solution
set for some system of linear homogeneous equations in n
variables.

The proof is based on 3 observations:

(1) the solution set for a system of linear homogeneous
equations is the nullspace of the coefficient matrix;

(2) for any matrix, {nullspace} = {row space}*;

(3) any subspace of R" can be represented as the row space of
some matrix.

Now, given a subspace V C R”, let W = V1. By the above,
there exists a matrix A such that W ={row space of A}.
Then V = W+ = {nullspace of A}.



