Lecture 33: **MATH 304** Linear Algebra Inner product spaces. #### Norm The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n . Definition. Let V be a vector space. A function $\alpha: V \to \mathbb{R}$, usually denoted $\alpha(\mathbf{x}) = \|\mathbf{x}\|$, is called a **norm** on V if it has the following properties: (i) $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality) A **normed vector space** is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$. Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$ • $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \ p \ge 1.$ Examples. $V = C[a, b], f : [a, b] \to \mathbb{R}.$ $$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le b} |f(x)|.$$ • $$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$$ # Inner product The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n . Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law) An **inner product space** is a vector space endowed with an inner product. Examples. $V = \mathbb{R}^n$. - $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$. - $\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$, where $d_1, d_2, \dots, d_n > 0$. - $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$, where D is an invertible $n \times n$ matrix. *Remarks.* (a) Invertibility of *D* is necessary to show that $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$. (b) The second example is a particular case of the third one when $D = \operatorname{diag}(d_1^{1/2}, d_2^{1/2}, \dots, d_n^{1/2})$. *Problem.* Find an inner product on \mathbb{R}^2 such that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = 2$, $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 3$, and $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = -1$, where $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$. Let $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$. Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$, $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$. Using bilinearity, we obtain $$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$ $$= x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$ $$= x_1 y_1 \langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1 y_2 \langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2 y_1 \langle \mathbf{e}_2, \mathbf{e}_1 \rangle + x_2 y_2 \langle \mathbf{e}_2, \mathbf{e}_2 \rangle$$ $=2x_1y_1-x_1y_2-x_2y_1+3x_2y_2.$ It remains to check that $\langle \mathbf{x},\mathbf{x}\rangle>0$ for $\mathbf{x}\neq\mathbf{0}$. Indeed, $\langle \mathbf{x}, \mathbf{x} \rangle = 2x_1^2 - 2x_1x_2 + 3x_2^2 = (x_1 - x_2)^2 + x_1^2 + 2x_2^2$. Example. $V = \mathcal{M}_{m,n}(\mathbb{R})$, space of $m \times n$ matrices. • $$\langle A, B \rangle = \operatorname{trace}(AB^T)$$. If $A=(a_{ij})$ and $B=(b_{ij})$, then $\langle A,B\rangle=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}a_{ij}b_{ij}$. Examples. V = C[a, b]. - $\langle f,g\rangle = \int_a^b f(x)g(x) dx$. - $\langle f,g\rangle = \int_a^b f(x)g(x)w(x) dx$, where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b]. w is called the **weight** function. **Theorem** Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\langle \mathbf{x}, \mathbf{v} \rangle^2 < \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$. *Proof:* For any $$t \in \mathbb{R}$$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x} + t\mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} + t\mathbf{y} \rangle + t\langle \mathbf{y}, \mathbf{x} + t\mathbf{y} \rangle$ $$= \langle \mathbf{x}, \mathbf{x} \rangle + t\langle \mathbf{x}, \mathbf{y} \rangle + t\langle \mathbf{y}, \mathbf{x} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle.$$ Assume that $\mathbf{y} \neq \mathbf{0}$ and let $t = -\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + t \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\langle \mathbf{v}, \mathbf{v} \rangle}$. Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$, the desired inequality follows. In the case $\mathbf{y} = \mathbf{0}$, we have $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{y} \rangle = 0$. # **Cauchy-Schwarz Inequality:** $$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$ Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| < ||\mathbf{x}|| \, ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Equivalently, for all $x_i, y_i \in \mathbb{R}$, $$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$ **Corollary 2** For any $f, g \in C[a, b]$, $$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \leq \int_{a}^{b} |f(x)|^{2} dx \cdot \int_{a}^{b} |g(x)|^{2} dx.$$ # Norms induced by inner products **Theorem** Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm. *Proof:* Positivity is obvious. Homogeneity: $||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$ Triangle inequality (follows from Cauchy-Schwarz's): $$||\mathbf{x} + \mathbf{y}||^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$ $$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$ $$\leq \langle \mathbf{x}, \mathbf{x} \rangle + |\langle \mathbf{x}, \mathbf{y} \rangle| + |\langle \mathbf{y}, \mathbf{x} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$ $$\leq ||\mathbf{x}||^2 + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^2 = (||\mathbf{x}|| + ||\mathbf{y}||)^2.$$ Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$, is the norm induced by the dot product $$\mathbf{x} \cdot \mathbf{v} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$ • The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x) dx$. ## **Angle** Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. Then $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$ (the Cauchy-Schwarz inequality). Therefore we can define the **angle** between nonzero vectors in V by $$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$ Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y})$. In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. ## **Orthogonal** sets Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$. An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$. Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if $$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$