
Math 311-503 Spring 2007

Sample problems for Test 2: Solutions
Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Let P2 be the vector space of all polynomials (with real coefficients)
of degree at most 2. Determine which of the following subsets of P2 are vector subspaces. Briefly
explain.

(i) The set S1 of polynomials p(x) ∈ P2 such that p(0) = 0.

The set S1 is not empty because it contains the zero polynomial. S1 is a subspace of P2 since
it is closed under addition and scalar multiplication. Alternatively, S1 is the null-space of a linear
functional ℓ : P2 → R given by ℓ[p(x)] = p(0).

(ii) The set S2 of polynomials p(x) ∈ P2 such that p(0) = 0 and p(1) = 0.

The set S2 is a subspace of P2 for the same reason as the set S1.

(iii) The set S3 of polynomials p(x) ∈ P2 such that p(0) = 0 or p(1) = 0.

The set S3 is not a subspace because it is not closed under addition. For example, the polynomials
p1(x) = x and p2(x) = x − 1 belong to S3 while their sum p(x) = 2x − 1 is not in S3.

(iv) The set S4 of polynomials p(x) ∈ P2 such that (p(0))2 + 2(p(1))2 + (p(2))2 = 0.

A polynomial p(x) ∈ P2 belongs to S4 if and only if p(0) = p(1) = p(2) = 0. Since the degree of
p(x) is at most 2, this means that the set S4 consists of a single element, the zero polynomial. Thus
S4 is the trivial subspace of P2.

Problem 2 (20 pts.) Let L be the linear operator on R
2 given by

L

(

x

y

)

=

(

2 −1
−3 2

) (

x

y

)

.

Find the matrix of the operator L relative to the basis v1 = (1, 1), v2 = (1,−1).

Let B denote the matrix of L relative to the basis v1, v2. The columns of B are coordinates of
the vectors L(v1) and L(v2) relative to the basis v1, v2. We obtain that

L(v1) =

(

2 −1
−3 2

) (

1
1

)

=

(

1
−1

)

, L(v2) =

(

2 −1
−3 2

) (

1
−1

)

=

(

3
−5

)

.

Hence L(v1) = v2 = 0v1 + 1v2. To determine the coordinates (a, b) of the vector L(v2) relative to
the basis v1, v2, we need to solve the vector equation av1 + bv2 = L(v2), which is equivalent to the
system

{

a + b = 3,
a − b = −5.

Solving the system, we find that a = −1, b = 4. Thus L(v2) = −v1 + 4v2 and

B =

(

0 −1
1 4

)

.
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Alternative solution: Let A =

(

2 −1
−3 2

)

and let B denote the matrix of L relative to the basis

v1, v2. Let U denote the 2-by-2 matrix whose columns are vectors v1 and v2:

U =

(

1 1
1 −1

)

.

The matrix U can be used to convert coordinates relative to the basis v1, v2 into the standard
coordinates in R

2. It follows that B = U−1AU . Using the formula

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

,

we obtain that

U−1 = −1

2

(

−1 −1
−1 1

)

=
1

2

(

1 1
1 −1

)

=
1

2
U.

Then

B = U−1AU =
1

2

(

1 1
1 −1

)(

2 −1
−3 2

)(

1 1
1 −1

)

=
1

2

(

−1 1
5 −3

)(

1 1
1 −1

)

=
1

2

(

0 −2
2 8

)

=

(

0 −1
1 4

)

.

Problem 3 (30 pts.) Consider a linear operator f : R
3 → R

3, f(x) = Ax, where

A =





5 3 5
2 1 2
1 0 1



 .

(i) Find a basis for the image of f .

The image of the linear operator f is the subspace of R
3 spanned by columns of the matrix A, that

is, by vectors v1 = (5, 2, 1) and v2 = (3, 1, 0) (the third column coincides with the first one). Clearly,
the vectors v1 and v2 are not parallel. Hence they are linearly independent. Thus v1, v2 is a basis
for the image of f .

(ii) Find a basis for the null-space of f .

The null-space of f is the set of solutions of the vector equation Ax = 0. To solve the equation,
we shall convert the matrix A to reduced echelon form. Since the right-hand side of the equation is
the zero vector, elementary row operations do not change the solution set.

First we interchange the first row of the matrix A with the third one:





5 3 5
2 1 2
1 0 1



 →





1 0 1
2 1 2
5 3 5



 .

Then we subtract 2 times the first row from the second row and 5 times the first row from the third
row:





1 0 1
2 1 2
5 3 5



 →





1 0 1
0 1 0
5 3 5



 →





1 0 1
0 1 0
0 3 0



 .
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Finally, we subtract 3 times the second row from the third row:





1 0 1
0 1 0
0 3 0



 →





1 0 1
0 1 0
0 0 0



 .

It follows that the vector equation Ax = 0 is equivalent to the system x + z = y = 0, where
x = (x, y, z). The general solution of the system is x = −t, y = 0, z = t for an arbitrary t ∈ R. That
is, x = (−t, 0, t) = t(−1, 0, 1), where t ∈ R. Thus the null-space of the linear operator f is the line
t(−1, 0, 1). The vector (−1, 0, 1) is a basis for this line.

Problem 4 (30 pts.) Let B =





1 1 1
1 1 1
0 0 1



.

(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. The determinant
is easily evaluated using the expansion by the third row:

det(B − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 1 1
1 1 − λ 1
0 0 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)

∣

∣

∣

∣

1 − λ 1
1 1 − λ

∣

∣

∣

∣

= (1 − λ)
(

(1 − λ)2 − 1
)

= −λ(1 − λ)(2 − λ).

Hence the matrix B has three eigenvalues: 0, 1, and 2.

(ii) For each eigenvalue of B, find an associated eigenvector.

An eigenvector x = (x, y, z) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)x = 0.

First consider the case λ = 0. We obtain that

Bx = 0 ⇐⇒





1 1 1
1 1 1
0 0 1









x
y
z



 =





0
0
0



 ⇐⇒





1 1 0
0 0 1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x + y = 0,
z = 0.

The general solution is x = −t, y = t, z = 0, where t ∈ R. In particular, v1 = (−1, 1, 0) is an
eigenvector of B associated with the eigenvalue 0.

Next consider the case λ = 1. We obtain that

(B − I)x = 0 ⇐⇒





0 1 1
1 0 1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒





1 0 1
0 1 1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x + z = 0,
y + z = 0.

The general solution is x = −t, y = −t, z = t, where t ∈ R. In particular, v2 = (−1,−1, 1) is an
eigenvector of B associated with the eigenvalue 1.

It remains to consider the case λ = 2. In this case,

(B − 2I)x = 0 ⇐⇒





−1 1 1
1 −1 1
0 0 −1









x
y
z



 =





0
0
0




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⇐⇒





1 −1 0
0 0 1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x − y = 0,
z = 0.

The general solution is x = t, y = t, z = 0, where t ∈ R. In particular, v3 = (1, 1, 0) is an eigenvector
of B associated with the eigenvalue 2.

(iii) Is there a basis for R
3 consisting of eigenvectors of B?

The vectors v1 = (−1, 1, 0), v2 = (−1,−1, 1), and v3 = (1, 1, 0) are eigenvectors of the matrix
B associated with distinct eigenvalues 0, 1, and 2, respectively. Therefore these vectors are linearly
independent. It follows that v1,v2,v3 is a basis for R

3.

Bonus Problem 5 (25 pts.) Let f1, f2, f3, . . . be the Fibonacci numbers defined by

f1 = f2 = 1, fn = fn−1 + fn−2 for n ≥ 3. Find lim
n→∞

fn+1

fn

.

For any integer n ≥ 1 define a two-dimensional vector vn = (fn+1, fn). It follows from the
definition of the Fibonacci numbers that

(

fn+2

fn+1

)

=

(

1 1
1 0

) (

fn+1

fn

)

.

That is, vn+1 = Avn for n = 1, 2, . . . , where

A =

(

1 1
1 0

)

.

In particular, v2 = Av1, v3 = Av2 = A2
v1, v4 = Av3 = A3

v1, and so on. In general, vn = An−1
v1

for n = 2, 3, . . . .
The characteristic equation for the matrix A is λ2 − λ − 1 = 0. This equation has two roots

λ1 =
1 +

√
5

2
and λ2 =

1 −
√

5

2
. It is easy to see that λ1 > 1 and −1 < λ2 < 0. Let w1 = (x1, y1)

and w2 = (x2, y2) be eigenvectors of A associated with the eigenvalues λ1 and λ2, respectively. The
vectors w1 and w2 are linearly independent, hence they form a basis for R

2. In particular, the vector
v1 = (1, 1) is represented as aw1 + bw2 for some a, b ∈ R. Note that a 6= 0 and b 6= 0 because v1 is
not an eigenvector of A.

Since v1 = aw1 + bw2, it follows that

vn = An−1
v1 = An−1(aw1 + bw2) = aAn−1

w1 + bAn−1
w2 = aλn−1

1
w1 + bλn−1

2
w2

for n ≥ 2. Then fn = aλn−1
1

y1 + bλn−1
2

y2. Therefore

fn+1

fn

=
aλn

1y1 + bλn

2y2

aλn−1
1

y1 + bλn−1
2

y2

= λ1

ay1 + b(λ2/λ1)
ny2

ay1 + b(λ2/λ1)n−1y2

.

Observe that y1 6= 0 because (1, 0) is not an eigenvector of A. Besides, |λ2/λ1| < 1 since λ1 > 1 and
|λ2| < 1. Thus

lim
n→∞

fn+1

fn

= λ1 =
1 +

√
5

2
.
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