
Math 311-503 March 29, 2007

Test 2: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of R
3 are subspaces.

Briefly explain.

(i) The set S1 of vectors (x, y, z) ∈ R
3 such that xyz = 0.

(ii) The set S2 of vectors (x, y, z) ∈ R
3 such that x + y + z = 0.

(iii) The set S3 of vectors (x, y, z) ∈ R
3 such that y2 + z2 = 0.

(iv) The set S4 of vectors (x, y, z) ∈ R
3 such that y2 − z2 = 0.

A subset of R
3 is a subspace if it is closed under addition and scalar multiplication. Besides, a

subspace must not be empty.
It is easy to see that each of the sets S1, S2, S3, and S4 contains the zero vector (0, 0, 0) and all

these sets are closed under scalar multiplication.
The set S1 is the union of three planes x = 0, y = 0, and z = 0. It is not closed under addition as

the following example shows: (1, 1, 0) + (0, 0, 1) = (1, 1, 1).
S2 is a plane passing through the origin. Obviously, it is closed under addition.
The condition y2 +z2 = 0 is equivalent to y = z = 0. Hence S3 is a line passing through the origin.

It is closed under addition.
Since y2 − z2 = (y − z)(y + z), the set S4 is the union of two planes y − z = 0 and y + z = 0. The

following example shows that S4 is not closed under addition: (0, 1, 1) + (0, 1,−1) = (0, 2, 0).
Thus S2 and S3 are subspaces of R

3 while S1 and S4 are not.

Problem 2 (20 pts.) Let M2,2(R) denote the space of 2-by-2 matrices with real entries.
Consider a linear operator L : M2,2(R) → M2,2(R) given by

L

(

x y

z w

)

=

(

1 2
3 4

)(

x y

z w

)

.

Find the matrix of the operator L relative to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Let ML denote the desired matrix. By definition, ML is a 4-by-4 matrix whose columns are
coordinates of the matrices L(E1), L(E2), L(E3), L(E4) relative to the basis E1, E2, E3, E4. We have
that

L(E1) =

(

1 2
3 4

)(

1 0
0 0

)

=

(

1 0
3 0

)

= 1E1 + 0E2 + 3E3 + 0E4,

L(E2) =

(

1 2
3 4

)(

0 1
0 0

)

=

(

0 1
0 3

)

= 0E1 + 1E2 + 0E3 + 3E4,

L(E3) =

(

1 2
3 4

)(

0 0
1 0

)

=

(

2 0
4 0

)

= 2E1 + 0E2 + 4E3 + 0E4,

L(E4) =

(

1 2
3 4

)(

0 0
0 1

)

=

(

0 2
0 4

)

= 0E1 + 2E2 + 0E3 + 4E4.
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It follows that

ML =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









.

Problem 3 (30 pts.) Consider a linear operator f : R
3 → R

3, f(x) = Ax, where

A =





1 −1 −2
−2 1 3
−1 0 1



 .

(i) Find a basis for the image of f .

The image of the linear operator f is the subspace of R
3 spanned by columns of the matrix A,

that is, by vectors v1 = (1,−2,−1), v2 = (−1, 1, 0), and v3 = (−2, 3, 1). The third column is a linear
combination of the first two, v3 = v2 − v1. Therefore the span of v1, v2, and v3 is the same as the
span of v1 and v2. The vectors v1 and v2 are linearly independent because they are not parallel. It
follows that v1, v2 is a basis for the image of f .

Alternative solution: The image of f is spanned by columns of the matrix A, that is, by vectors
v1 = (1,−2,−1), v2 = (−1, 1, 0), and v3 = (−2, 3, 1). To check linear independence of these vectors,
we evaluate the determinant of A (using expansion by the third row):

detA =

∣

∣

∣

∣

∣

∣

1 −1 −2
−2 1 3
−1 0 1

∣

∣

∣

∣

∣

∣

= −1

∣

∣

∣

∣

−1 −2
1 3

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

1 −1
−2 1

∣

∣

∣

∣

= (−1) · (−1) + 1 · (−1) = 0.

Since detA = 0, the columns of the matrix A are linearly dependent. Then the image of f is at most
two-dimensional. On the other hand, the vectors v1 and v2 are linearly independent because they
are not parallel. Hence they span a two-dimensional subspace of R

3. It follows that this subspace
coincides with the image of f . Therefore v1, v2 is a basis for the image of f .

(ii) Find a basis for the null-space of f .

The null-space of f is the set of solutions of the vector equation Ax = 0. To solve the equation,
we shall convert the matrix A to reduced echelon form. Since the right-hand side of the equation is
the zero vector, elementary row operations do not change the solution set.

First we add the first row of the matrix A twice to the second row and once to the third one:




1 −1 −2
−2 1 3
−1 0 1



→





1 −1 −2
0 −1 −1

−1 0 1



→





1 −1 −2
0 −1 −1
0 −1 −1



 .

Then we subtract the second row from the third row:




1 −1 −2
0 −1 −1
0 −1 −1



→





1 −1 −2
0 −1 −1
0 0 0



 .

Finally, we multiply the second row by −1 and add it to the first row:





1 −1 −2
0 −1 −1
0 0 0



→





1 −1 −2
0 1 1
0 0 0



→





1 0 −1
0 1 1
0 0 0



 .
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It follows that the vector equation Ax = 0 is equivalent to the system x − z = y + z = 0, where
x = (x, y, z). The general solution of the system is x = t, y = −t, z = t for an arbitrary t ∈ R. That
is, x = (t,−t, t) = t(1,−1, 1), where t ∈ R. Thus the null-space of the linear operator f is the line
t(1,−1, 1). The vector (1,−1, 1) is a basis for this line.

Backdoor solution: It is easy to observe that the second column of the matrix A is the sum of the
first and the third columns. This implies that the vector w = (1,−1, 1) is in the null-space of f , that
is, Aw = 0. Since the image of f has already been shown to be two-dimensional, the null-space of f

has to be one-dimensional. It follows that the null-space of f is the line spanned by w. Consequently,
the vector w is a basis for the null-space.

Problem 4 (30 pts.) Let B =

(

2 3
1 4

)

.

(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. We obtain that

det(B − λI) =

∣

∣

∣

∣

2 − λ 3
1 4 − λ

∣

∣

∣

∣

= (2 − λ)(4 − λ) − 3 · 1 = λ2
− 6λ + 5 = (λ − 1)(λ − 5).

Hence the matrix B has two eigenvalues: 1 and 5.

(ii) For each eigenvalue of B, find an associated eigenvector.

An eigenvector x = (x, y) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)x = 0.

First consider the case λ = 1. We obtain that

(B − I)x = 0 ⇐⇒

(

1 3
1 3

)(

x

y

)

=

(

0
0

)

⇐⇒

(

1 3
0 0

)(

x

y

)

=

(

0
0

)

⇐⇒ x + 3y = 0.

The general solution is x = −3t, y = t, where t ∈ R. In particular, v1 = (−3, 1) is an eigenvector of
B associated with the eigenvalue 1.

Now consider the case λ = 5. We obtain that

(B − 5I)x = 0 ⇐⇒

(

−3 3
1 −1

)(

x

y

)

=

(

0
0

)

⇐⇒

(

1 −1
0 0

)(

x

y

)

=

(

0
0

)

⇐⇒ x − y = 0.

The general solution is x = t, y = t, where t ∈ R. In particular, v2 = (1, 1) is an eigenvector of B

associated with the eigenvalue 5.

(iii) Is there a basis for R
2 consisting of eigenvectors of B?

The vectors v1 = (−3, 1) and v2 = (1, 1) are eigenvectors of the matrix B. The two eigenvectors
are linearly independent because they are associated with different eigenvalues of B (or simply because
they are not parallel). Therefore v1,v2 is a basis for R

2.
Alternatively, the existence of a basis for R

2 consisting of eigenvectors of B already follows from
the fact that the matrix B has two distinct eigenvalues.

(iv) Find all eigenvalues of the matrix B2.

By the above the matrix B has eigenvalues 1 and 5. This means that Bv1 = v1 and Bv2 = 5v2

for some nonzero vectors v1,v2 ∈ R
2. Then

B2
v1 = B(Bv1) = Bv1 = v1, B2

v2 = B(Bv2) = B(5v2) = 5Bv2 = 5(5v2) = 25v2.
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Thus v1 and v2 are eigenvectors of the matrix B2 associated with the eigenvalues 1 and 25, respectively.
Since a 2-by-2 matrix has at most 2 eigenvalues, 1 and 25 are the only eigenvalues of B2.

Bonus Problem 5 (25 pts.) Solve the following system of differential equations (find
all solutions):















dx

dt
= 2x + 3y,

dy

dt
= x + 4y.

Introducing a vector function v(t) = (x(t), y(t)), we can rewrite the system in the following way:

dv

dt
= Bv, where B =

(

2 3
1 4

)

.

As shown in the solution of Problem 4, there is a basis for R
2 consisting of eigenvectors of the matrix

B. Namely, v1 = (−3, 1) and v2 = (1, 1) are eigenvectors of B associated with the eigenvalues 1 and
5, respectively. Also, v1,v2 is a basis for R

2. It follows that

v(t) = r1(t)v1 + r2(t)v2,

where r1 and r2 are well-defined scalar functions (coordinates of v relative to the basis v1,v2). Then

dv

dt
=

dr1

dt
v1 +

dr2

dt
v2, Bv = r1Bv1 + r2Bv2 = r1v1 + 5r2v2.

As a consequence,

dv

dt
= Bv ⇐⇒















dr1

dt
= r1,

dr2

dt
= 5r2.

The general solution of the differential equation r′
1

= r1 is r1(t) = c1e
t, where c1 is an arbitrary

constant. The general solution of the equation r′
2

= 5r2 is r2(t) = c2e
5t, where c2 is another arbitrary

constant. Therefore the general solution of the equation v
′ = Bv is

v(t) = c1e
t
v1 + c2e

5t
v2 = c1e

t

(

−3

1

)

+ c2e
5t

(

1

1

)

=

(

−3c1e
t + c2e

5t

c1e
t + c2e

5t

)

,

where c1, c2 ∈ R. Equivalently,
{

x(t) = −3c1e
t + c2e

5t,

y(t) = c1e
t + c2e

5t.
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