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Topics in Applied Mathematics

Lecture 7:
Linear independence (continued).

Matrix algebra.



Linear independence

Definition. Vectors v1, v2, . . . , vk ∈ R
n are called

linearly dependent if they satisfy a relation

t1v1 + t2v2 + · · · + tkvk = 0,

where the coefficients t1, . . . , tk ∈ R are not all
equal to zero. Otherwise the vectors v1, v2, . . . , vk

are called linearly independent. That is, if

t1v1+t2v2+ · · ·+tkvk = 0 =⇒ t1 = · · · = tk = 0.

Theorem The vectors v1, . . . , vk are linearly
dependent if and only if one of them is a linear

combination of the others.



Definition. A subset S ⊂ R
n is called a hyperplane

(or an affine subspace) if it has a parametric

representation t1v1 + t2v2 + · · · + tkvk + v0,
where vi are fixed n-dimensional vectors and ti are

arbitrary scalars.

The number k of parameters may depend on a
representation. The hyperplane S is called a

k-plane if k is as small as possible.

Theorem A hyperplane
t1v1 + t2v2 + · · · + tkvk + v0

is a k-plane if and only if vectors v1, v2, . . . , vk are
linearly independent.



Examples

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and

e3 = (0, 0, 1) in R
3.

t1e1 + t2e2 + t3e3 = 0 =⇒ (t1, t2, t3) = 0
=⇒ t1 = t2 = t3 = 0

Thus e1, e2, e3 are linearly independent.

• Vectors v1 = (4, 3, 0, 1), v2 = (1,−1, 2, 0), and
v3 = (−2, 2,−4, 0) in R

4.

It is easy to observe that v3 = −2v2.
=⇒ 0v1 + 2v2 + 1v3 = 0

Thus v1, v2, v3 are linearly dependent. At the same time, the
vector v1 is not a linear combination of v2 and v3.



• Vectors u1 = (1, 2, 0), u2 = (3, 1, 1), and

u3 = (4,−7, 3) in R
3.

We need to check if the vector equation t1u1 + t2u2 + t3u3 = 0
has solutions other than t1 = t2 = t3 = 0.

This vector equation is equivalent to a system






r1 + 3r2 + 4r3 = 0,
2r1 + r2 − 7r3 = 0,
r2 + 3r3 = 0.





1 3 4 0
2 1 −7 0
0 1 3 0





Row reduction yields:




1 3 4 0
2 1 −7 0
0 1 3 0



 →





1 3 4 0
0 −5 −15 0
0 1 3 0



 →





1 3 4 0
0 1 3 0
0 0 0 0





The variable t3 is free =⇒ there are infinitely many solutions
=⇒ the vectors u1, u2, u3 are linearly dependent.



Matrices

Definition. An m-by-n matrix is a rectangular
array of numbers that has m rows and n columns:











a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn











Notation: A = (aij)1≤i≤n, 1≤j≤m or simply A = (aij)
if the dimensions are known.



An n-dimensional vector can be represented as a
1 × n matrix (row vector) or as an n × 1 matrix

(column vector):

(x1, x2, . . . , xn)











x1

x2

...

xn













An m × n matrix A = (aij) can be regarded as a

column of n-dimensional row vectors or as a row of
m-dimensional column vectors:

A =











v1

v2

...
vm











, vi = (ai1, ai2, . . . , ain)

A = (w1,w2, . . . ,wn), wj =











a1j

a2j
...

amj













Vector algebra

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
be n-dimensional vectors, and r ∈ R be a scalar.

Vector sum: a + b = (a1 + b1, a2 + b2, . . . , an + bn)

Scalar multiple: ra = (ra1, ra2, . . . , ran)

Zero vector: 0 = (0, 0, . . . , 0)

Negative of a vector: −b = (−b1,−b2, . . . ,−bn)

Vector difference:

a − b = a + (−b) = (a1 − b1, a2 − b2, . . . , an − bn)



Matrix algebra

Definition. Let A = (aij) and B = (bij) be m×n

matrices. The sum A + B is defined to be the m×n

matrix C = (cij) such that cij = aij + bij for all
indices i , j .

That is, two matrices with the same dimensions can

be added by adding their corresponding entries.




a11 a12

a21 a22

a31 a32



 +





b11 b12

b21 b22

b31 b32



 =





a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32







Definition. Given an m×n matrix A = (aij) and a
number r , the scalar multiple rA is defined to be

the m×n matrix D = (dij) such that dij = raij for all
indices i , j .

That is, to multiply a matrix by a scalar r ,

one multiplies each entry of the matrix by r .

r





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





ra11 ra12 ra13

ra21 ra22 ra23

ra31 ra32 ra33







The m×n zero matrix (all entries are zeros) is
denoted Omn or simply O.

Negative of a matrix: −A is defined as (−1)A.

Matrix difference: A− B is defined as A + (−B).

As far as the linear operations (addition and scalar
multiplication) are concerned, the m×n matrices

can be regarded as mn-dimensional vectors.



Examples

A =

(

3 2 −1
1 1 1

)

, B =

(

2 0 1
0 1 1

)

,

C =

(

2 0
0 1

)

, D =

(

1 1
0 1

)

.

A + B =

(

5 2 0

1 2 2

)

, A − B =

(

1 2 −2

1 0 0

)

,

2C =

(

4 0

0 2

)

, 3D =

(

3 3

0 3

)

,

2C + 3D =

(

7 3

0 5

)

, A + D is not defined.



Properties of linear operations

(A + B) + C = A + (B + C )

A + B = B + A

A + O = O + A = A

A + (−A) = (−A) + A = O

r(sA) = (rs)A

r(A + B) = rA + rB

(r + s)A = rA + sA

1A = A

0A = O



Dot product

Definition. The dot product of n-dimensional

vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
is a scalar

x · y = x1y1 + x2y2 + · · · + xnyn =

n
∑

k=1

xkyk .



Matrix multiplication

The product of matrices A and B is defined if the
number of columns in A matches the number of

rows in B .

Definition. Let A = (aik) be an m×n matrix and
B = (bkj) be an n×p matrix. The product AB is

defined to be the m×p matrix C = (cij) such that
cij =

∑n
k=1

aikbkj for all indices i , j .

That is, matrices are multiplied row by column:

(

∗ ∗ ∗

* * *

)





∗ ∗ * ∗

∗ ∗ * ∗

∗ ∗ * ∗



 =

(

∗ ∗ ∗ ∗

∗ ∗ * ∗

)



A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn











=











v1

v2

...
vm











B =











b11 b12 . . . b1p

b21 b22 . . . b2p
...

... . . . ...

bn1 bn2 . . . bnp











= (w1,w2, . . . ,wp)

=⇒ AB =











v1·w1 v1·w2 . . . v1·wp

v2·w1 v2·w2 . . . v2·wp
...

... . . . ...
vm·w1 vm·w2 . . . vm·wp













Examples.

(x1, x2, . . . , xn)









y1

y2

...
yn









= (
∑n

k=1
xkyk),









y1

y2

...
yn









(x1, x2, . . . , xn) =









y1x1 y1x2 . . . y1xn

y2x1 y2x2 . . . y2xn
...

... . . . ...
ynx1 ynx2 . . . ynxn









.



Example.

(

1 1 −1

0 2 1

)





0 3 1 1

−2 5 6 0
1 7 4 1



 =

(

−3 1 3 0

−3 17 16 1

)



Any system of linear equations can be rewritten as a
matrix equation.














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn = bm

⇐⇒











a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn





















x1

x2

...
xn











=











b1

b2

...
bm













Properties of matrix multiplication:

(AB)C = A(BC ) (associative law)

(A + B)C = AC + BC (distributive law #1)

C (A + B) = CA + CB (distributive law #2)

(rA)B = A(rB) = r(AB)

(Any of the above identities holds provided that

matrix sums and products are well defined.)


