# MATH 311

Topics in Applied Mathematics

# Lecture 16: Diagonalization. Euclidean structure in $\mathbb{R}^n$ .

### Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of *L* with respect to some basis is diagonal;
- there exists a basis for *V* formed by eigenvectors of *L*.

The operator *L* is **diagonalizable** if it satisfies these conditions.

Let A be an  $n \times n$  matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as

 $A = UBU^{-1}$ , where the matrix B is diagonal;

• there exists a basis for  $\mathbb{R}^n$  formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions. Otherwise A is called **defective**.

Example. 
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by  $\mathbf{v}_1 = (-1, 1)$ .
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by  $\mathbf{v}_2 = (1, 1)$ .
- Eigenvectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  form a basis for  $\mathbb{R}^2$ .

Thus the matrix A is diagonalizable. Namely,  $A = UBU^{-1}$ , where

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Example. 
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenspace corresponding to 0 is spanned by  $\mathbf{v}_1 = (-1, 1, 0)$ .
- The eigenspace corresponding to 2 is spanned by  $\mathbf{v}_2 = (1, 1, 0)$  and  $\mathbf{v}_3 = (-1, 0, 1)$ .
- Eigenvectors  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  form a basis for  $\mathbb{R}^3$ .

Thus the matrix A is diagonalizable. Namely,  $A = UBU^{-1}$ , where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

# **Problem.** Diagonalize the matrix $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ .

We need to find a diagonal matrix B and an invertible matrix U such that  $A = UBU^{-1}$ .

Suppose that  $\mathbf{v}_1 = (x_1, y_1)$ ,  $\mathbf{v}_2 = (x_2, y_2)$  is a basis for  $\mathbb{R}^2$  formed by eigenvectors of A, i.e.,  $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$  for some  $\lambda_i \in \mathbb{R}$ . Then we can take

$$B = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \qquad U = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}.$$

Note that U is the transition matrix from the basis  $\mathbf{v}_1, \mathbf{v}_2$  to the standard basis.

**Problem.** Diagonalize the matrix  $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ .

Characteristic equation of *A*: 
$$\begin{vmatrix} 4 - \lambda & 3 \\ 0 & 1 - \lambda \end{vmatrix} = 0$$
.

$$(4-\lambda)(1-\lambda)=0 \implies \lambda_1=4, \ \lambda_2=1.$$

Associated eigenvectors:  $\mathbf{v}_1 = (1,0), \ \mathbf{v}_2 = (-1,1).$ 

Thus 
$$A = UBU^{-1}$$
, where 
$$B = \begin{pmatrix} 4 & 0 \end{pmatrix} \qquad U = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

# **Problem.** Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ . Find $A^5$ .

We know that  $A = UBU^{-1}$ , where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Then 
$$A^5 = UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}$$
  
=  $UB^5U^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1024 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ 

$$= UB^5U^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1021 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1024 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1024 & 1023 \\ 0 & 1 \end{pmatrix}.$$

# **Problem.** Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ . Find a matrix C such that $C^2 = A$ .

We know that  $A = UBU^{-1}$ , where

$$B=egin{pmatrix} 4 & 0 \ 0 & 1 \end{pmatrix}, \qquad U=egin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix}.$$

Suppose that  $D^2 = B$  for some matrix D. Let  $C = UDU^{-1}$ . Then  $C^2 = UDU^{-1}UDU^{-1} = UD^2U^{-1} = UBU^{-1} = A$ .

We can take 
$$D=\begin{pmatrix} \sqrt{4} & 0 \\ 0 & \sqrt{1} \end{pmatrix}=\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Then 
$$C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

# **System of linear ODEs**

**Problem.** Solve a system 
$$\begin{cases} \frac{dx}{dt} = 4x + 3y, \\ \frac{dy}{dt} = y. \end{cases}$$

The system can be rewritten in vector form:

$$\frac{d\mathbf{v}}{dt} = A\mathbf{v}$$
, where  $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$ ,  $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ .

We know that  $A = UBU^{-1}$ , where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Let  $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$  be coordinates of the vector  $\mathbf{v}$  relative to the basis  $\mathbf{v}_1 = (1,0)$ ,  $\mathbf{v}_2 = (-1,1)$  of eigenvectors of A. Then  $\mathbf{v} = U\mathbf{w} \implies \mathbf{w} = U^{-1}\mathbf{v}$ .

It follows that

 $\frac{d\mathbf{w}}{dt} = \frac{d}{dt}(U^{-1}\mathbf{v}) = U^{-1}\frac{d\mathbf{v}}{dt} = U^{-1}A\mathbf{v} = U^{-1}AU\mathbf{w}.$ 

Thus  $\frac{d\mathbf{w}}{dt} = B\mathbf{w} \iff \begin{cases} \frac{dw_1}{dt} = 4w_1, \\ \frac{dw_2}{dt} = w_2. \end{cases}$ 

where  $c_1, c_2$  are arbitrary constants. Then

The general solution:  $w_1(t) = c_1 e^{4t}$ ,  $w_2(t) = c_2 e^t$ ,

 $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = U\mathbf{w}(t) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 e^{4t} \\ c_2 e^t \end{pmatrix} = \begin{pmatrix} c_1 e^{4t} - c_2 e^t \\ c_2 e^t \end{pmatrix}.$ 

There are **two obstructions** to diagonalization. They are illustrated by the following examples.

Example 1. 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

 $\det(A - \lambda I) = (\lambda - 1)^2$ . Hence  $\lambda = 1$  is the only eigenvalue. The associated eigenspace is the line t(1,0).

Example 2. 
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

$$\det(A - \lambda I) = \lambda^2 + 1.$$

⇒ no real eigenvalues or eigenvectors

(However there are *complex* eigenvalues/eigenvectors.)

# Vectors: geometric approach



- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

# Vectors: geometric approach



AB denotes the vector represented by the arrow with tip at B and tail at A.

 $\overrightarrow{AA}$  is called the zero vector and denoted **0**.

# Vectors: geometric approach



If  $\mathbf{v} = \overrightarrow{AB}$  then  $\overrightarrow{BA}$  is called the *negative vector* of  $\mathbf{v}$  and denoted  $-\mathbf{v}$ .

#### **Vector addition**

Given vectors  $\mathbf{a}$  and  $\mathbf{b}$ , their sum  $\mathbf{a} + \mathbf{b}$  is defined by the rule  $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ .

That is, choose points  $\overrightarrow{A}, \overrightarrow{B}, C$  so that  $\overrightarrow{AB} = \mathbf{a}$  and  $\overrightarrow{BC} = \mathbf{b}$ . Then  $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$ .



The *difference* of the two vectors is defined as  $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$ .



### **Scalar multiplication**

Let  $\mathbf{v}$  be a vector and  $r \in \mathbb{R}$ . By definition,  $r\mathbf{v}$  is a vector whose magnitude is |r| times the magnitude of  $\mathbf{v}$ . The direction of  $r\mathbf{v}$  coincides with that of  $\mathbf{v}$  if r > 0. If r < 0 then the directions of  $r\mathbf{v}$  and  $\mathbf{v}$  are opposite.



# Beyond linearity: length of a vector

The **length** (or the **magnitude**) of a vector  $\overrightarrow{AB}$  is the length of the representing segment AB. The length of a vector  $\mathbf{v}$  is denoted  $|\mathbf{v}|$  or  $||\mathbf{v}||$ .

Properties of vector length:

$$|\mathbf{x}| \geq 0$$
,  $|\mathbf{x}| = 0$  only if  $\mathbf{x} = \mathbf{0}$  (positivity)  $|r\mathbf{x}| = |r| |\mathbf{x}|$  (homogeneity)  $|\mathbf{x} + \mathbf{y}| \leq |\mathbf{x}| + |\mathbf{y}|$  (triangle inequality)



### Beyond linearity: angle between vectors

Given nonzero vectors  $\mathbf{x}$  and  $\mathbf{y}$ , let A, B, and C be points such that  $\overrightarrow{AB} = \mathbf{x}$  and  $\overrightarrow{AC} = \mathbf{y}$ . Then  $\angle BAC$  is called the **angle** between  $\mathbf{x}$  and  $\mathbf{y}$ .

The vectors  $\mathbf{x}$  and  $\mathbf{y}$  are called **orthogonal** (denoted  $\mathbf{x} \perp \mathbf{y}$ ) if the angle between them equals  $90^{\circ}$ .





Pythagorean Theorem:

$$\mathbf{x} \perp \mathbf{y} \implies |\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2$$

3-dimensional Pythagorean Theorem: If vectors  $\mathbf{x}, \mathbf{y}, \mathbf{z}$  are pairwise orthogonal then  $|\mathbf{x} + \mathbf{y} + \mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 + |\mathbf{z}|^2$ 



A x B

Law of cosines:
$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| |\mathbf{y}| \cos \theta$$

# Beyond linearity: dot product

The **dot product** of vectors  $\mathbf{x}$  and  $\mathbf{y}$  is

$$\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$$
,

where  $\theta$  is the angle between  ${\bf x}$  and  ${\bf y}$ .

The dot product is also called the **scalar product**.

Alternative notation:  $(\mathbf{x}, \mathbf{y})$  or  $\langle \mathbf{x}, \mathbf{y} \rangle$ .

The vectors  $\mathbf{x}$  and  $\mathbf{y}$  are orthogonal if and only if  $\mathbf{x} \cdot \mathbf{y} = 0$ .

Relations between lengths and dot products:

- $|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$
- $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$
- $|\mathbf{x} \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 2 \mathbf{x} \cdot \mathbf{y}$

# Vectors: algebraic approach

An *n*-dimensional coordinate vector is an element of  $\mathbb{R}^n$ , i.e., an ordered *n*-tuple  $(x_1, x_2, \dots, x_n)$  of real numbers.

Let  $\mathbf{a}=(a_1,a_2,\ldots,a_n)$  and  $\mathbf{b}=(b_1,b_2,\ldots,b_n)$  be vectors, and  $r\in\mathbb{R}$  be a scalar. Then, by definition,

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$
  
 $r\mathbf{a} = (ra_1, ra_2, \dots, ra_n),$ 

$$\mathbf{0} = (0, 0, \dots, 0),$$
  
 $-\mathbf{b} = (-b_1, -b_2, \dots, -b_n),$ 

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

# Cartesian coordinates: geometric meets algebraic



Once we specify an *origin* O, each point A is associated a *position vector*  $\overrightarrow{OA}$ . Conversely, every vector has a unique representative with tail at O.

Cartesian coordinates allow us to identify a line, a plane, and space with  $\mathbb{R}$ ,  $\mathbb{R}^2$ , and  $\mathbb{R}^3$ , respectively.

# Length and distance

Definition. The **length** of a vector  $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$  is  $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$ .

The **distance** between vectors/points  $\mathbf{x}$  and  $\mathbf{y}$  is  $\|\mathbf{y} - \mathbf{x}\|$ .

Properties of length:

$$\|\mathbf{x}\| \geq 0$$
,  $\|\mathbf{x}\| = 0$  only if  $\mathbf{x} = \mathbf{0}$  (positivity)  $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$  (homogeneity)  $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$  (triangle inequality)

## **Scalar product**

Definition. The scalar product of vectors  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  and  $\mathbf{y} = (y_1, y_2, \dots, y_n)$  is  $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^n x_k y_k$ .

Properties of scalar product:

$$\mathbf{x} \cdot \mathbf{x} \ge 0$$
,  $\mathbf{x} \cdot \mathbf{x} = 0$  only if  $\mathbf{x} = \mathbf{0}$  (positivity)  
 $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$  (symmetry)  
 $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$  (distributive law)  
 $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$  (homogeneity)

Relations between lengths and scalar products:

$$\begin{split} \|\mathbf{x}\| &= \sqrt{\mathbf{x} \cdot \mathbf{x}} \\ |\mathbf{x} \cdot \mathbf{y}| &\leq \|\mathbf{x}\| \, \|\mathbf{y}\| \qquad \text{(Cauchy-Schwarz inequality)} \\ \|\mathbf{x} - \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2 \, \mathbf{x} \cdot \mathbf{y} \end{split}$$

By the Cauchy-Schwarz inequality, for any nonzero vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
 for some  $0 \le \theta \le \pi$ .

 $\theta$  is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x**  $\perp$  **y**) if **x**  $\cdot$  **y** = 0 (i.e., if  $\theta = 90^{\circ}$ ).

**Problem.** Find the angle  $\theta$  between vectors  $\mathbf{x} = (2, -1)$  and  $\mathbf{y} = (3, 1)$ .

$${f x}=(2,-1) \ {f and} \ {f y}=(3,1).$$
  ${f x}\cdot{f y}=5, \ \|{f x}\|=\sqrt{5}, \ \|{f y}\|=\sqrt{10}.$ 

$$\mathbf{x} \cdot \mathbf{y} = 5$$
,  $\|\mathbf{x}\| = \sqrt{5}$ ,  $\|\mathbf{y}\| = \sqrt{10}$ .  
 $\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \implies \theta = 45^{\circ}$ 

**Problem.** Find the angle  $\phi$  between vectors  $\mathbf{v}=(-2,1,3)$  and  $\mathbf{w}=(4,5,1)$ .

$$\mathbf{v} \cdot \mathbf{w} = 0 \implies \mathbf{v} \perp \mathbf{w} \implies \phi = 90^{\circ}$$