MATH 311

Topics in Applied Mathematics

Lecture 18:
Least squares problems.
Norms and inner products.

Overdetermined system of linear equations:

$$\begin{cases} x + 2y = 3 \\ 3x + 2y = 5 \\ x + y = 2.09 \end{cases} \iff \begin{cases} x + 2y = 3 \\ -4y = -4 \\ -y = -0.91 \end{cases}$$

No solution: inconsistent system

Assume that a solution (x_0, y_0) does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of (x_0, y_0) .

One approach is the **least squares fit**. Namely, we look for a pair (x, y) that minimizes the sum $(x + 2y - 3)^2 + (3x + 2y - 5)^2 + (x + y - 2.09)^2$.

Least squares solution

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff A\mathbf{x} = \mathbf{b}$$

For any $\mathbf{x} \in \mathbb{R}^n$ define a **residual** $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$.

The **least squares solution** \mathbf{x} to the system is the one that minimizes $||r(\mathbf{x})||$ (or, equivalently, $||r(\mathbf{x})||^2$).

$$||r(\mathbf{x})||^2 = \sum_{i=1}^m (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$.

Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$ if and only if it is a solution of the associated **normal system** $A^T A \mathbf{x} = A^T \mathbf{b}$.

Proof: $A\mathbf{x}$ is an arbitrary vector in R(A), the column space of A. Hence the length of $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is minimal if $A\mathbf{x}$ is the orthogonal projection of \mathbf{b} onto R(A). That is, if $r(\mathbf{x})$ is orthogonal to R(A).

We know that $R(A)^{\perp} = N(A^{T})$, the nullspace of the transpose matrix. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if

$$A^T r(\hat{\mathbf{x}}) = \mathbf{0} \iff A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \iff A^T A\hat{\mathbf{x}} = A^T \mathbf{b}.$$

Find the least squares solution to

$$\begin{cases} x + 2y = 3\\ 3x + 2y = 5\\ x + y = 2.09 \end{cases}$$

$$3x + 2y = 2x + y = 2x$$

$$1 \quad 2$$

$$2 \quad 3 \quad 4$$

$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 2.09 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} 5 \\ 2.09 \end{pmatrix}$$

$$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} & 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\frac{2}{x}$$

 $\begin{pmatrix} 11 & 9 \\ 9 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 20.09 \\ 18.09 \end{pmatrix} \iff \begin{cases} x = 1 \\ y = 1.01 \end{cases}$

$$(x)$$
 $(1 \ 3)$

$$\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 2.09 \end{pmatrix}$$

Problem. Find the constant function that is the least square fit to the following data

$$f(x) = c \implies \begin{cases} c = 1 \\ c = 0 \\ c = 1 \\ c = 2 \end{cases} \implies \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$(1,1,1,1) egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix} (c) = (1,1,1,1) egin{pmatrix} 1 \ 0 \ 1 \ 2 \end{pmatrix}$$

$$c = \frac{1}{4}(1+0+1+2) = 1$$
 (mean arithmetic value)

Find the linear polynomial that is the least square fit to the following data

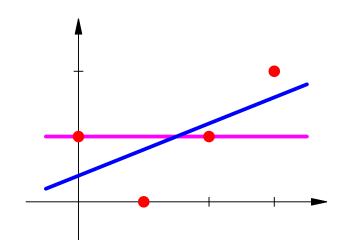
$$f(x) \parallel 1 \mid 0 \mid 1 \mid 2$$

$$\begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \\ c_1 + 2c_2 = 1 \end{cases} \implies$$

$$f(x) = c_1 + c_2 x \implies \begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \\ c_1 + 2c_2 = 1 \\ c_1 + 3c_2 = 2 \end{cases} \implies \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 6 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \iff \begin{cases} c_1 = 0.4 \\ c_2 = 0.4 \end{cases}$$



Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties:

(i)
$$\alpha(\mathbf{x}) \geq 0$$
, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity)
(ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity)
(iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$

Positivity and homogeneity are obvious.

The triangle inequality:

$$|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$$

$$\implies \max_j |x_j + y_j| \le \max_j |x_j| + \max_j |y_j|$$

• $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$.

Positivity and homogeneity are obvious.

The triangle inequality: $|x_i + y_i| \le |x_i| + |y_i|$ $\implies \sum_j |x_j + y_j| \le \sum_j |x_j| + \sum_j |y_j|$ Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \quad p > 0.$

Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \geq 1$.

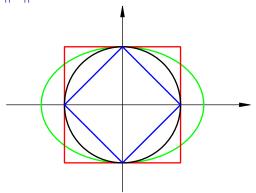
Remark. $\|\mathbf{x}\|_2 = \text{Euclidean length of } \mathbf{x}$.

Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

Unit circle: $\|\mathbf{x}\| = 1$



$$\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$$
 black $\|\mathbf{x}\| = (\frac{1}{2}x_1^2 + x_2^2)^{1/2}$ green $\|\mathbf{x}\| = |x_1| + |x_2|$ blue $\|\mathbf{x}\| = \max(|x_1|, |x_2|)$ red

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

$$\bullet \quad ||f||_{\infty} = \max_{\substack{a < x < b}} |f(x)|.$$

•
$$||f||_1 = \int_a^b |f(x)| dx$$
.

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

- $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n$, where $d_1, d_2, \ldots, d_n > 0$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$, where D is an invertible $n \times n$ matrix.

Remarks. (a) Invertibility of *D* is necessary to show that $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$.

(b) The second example is a particular case of the third one when $D = \text{diag}(d_1^{1/2}, d_2^{1/2}, \dots, d_n^{1/2})$.

Problem. Find an inner product on \mathbb{R}^2 such that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = 2$, $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 3$, and $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = -1$, where $\mathbf{e}_1 = (1,0), \ \mathbf{e}_2 = (0,1).$

Let
$$\mathbf{x} = (x_1, x_2)$$
, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$.

Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$, $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

= $x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$

$$= x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

= $x_1 y_1 \langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1 y_2 \langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2 y_1 \langle \mathbf{e}_2, \mathbf{e}_1 \rangle + x_2 y_2 \langle \mathbf{e}_2, \mathbf{e}_2 \rangle$

$$x_1y_1\langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1y_2\langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2y_1\langle \mathbf{e}_2, \mathbf{e}_1 \rangle -$$

$$= 2x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2.$$

Examples. V = C[a, b].

•
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$
.

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

w is called the **weight** function.

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$
 for all $\mathbf{x}, \mathbf{y} \in V$.

Proof: For any $t \in \mathbb{R}$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle$.

The right-hand side is a quadratic polynomial in t (provided that $\mathbf{y} \neq \mathbf{0}$). Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$ for all t, the discriminant D is nonpositive. But $D = 4\langle \mathbf{x}, \mathbf{y} \rangle^2 - 4\langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$.

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \, \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Proof: Positivity is obvious. Homogeneity:

$$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + |\langle \mathbf{x}, \mathbf{y} \rangle| + |\langle \mathbf{y}, \mathbf{x} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$< ||\mathbf{x}||^{2} + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^{2} = (||\mathbf{x}|| + ||\mathbf{y}||)^{2}.$$

Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$,

is the norm induced by the dot product

$$\mathbf{x} \cdot \mathbf{v} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$

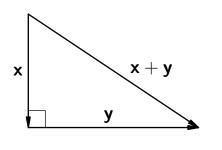
Angle

Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the *angle* between nonzero vectors in any vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y})$.

In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

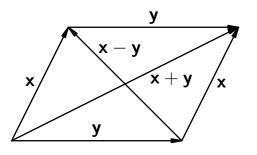


Pythagorean Theorem:

$$\mathbf{x} \perp \mathbf{y} \implies \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$



Parallelogram Identity:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$
.
Similarly, $\|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$.
Then $\|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$.