MATH 311
Topics in Applied Mathematics

Lecture 19:
Orthogonal sets.
The Gram-Schmidt orthogonalization process.



Orthogonal sets

Let V be an inner product space with an inner
product (-, -) and the induced norm || - ||.

Definition. A nonempty set S C V of nonzero
vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. Thatis, 0 ¢ S and
(x,y) =0 forany x,y € S, x #y.

An orthogonal set S C V s called orthonormal if
||| =1 for any x € S.

Remark. Vectors vi,vy,...,v, € V form an
orthonormal set if and only if

1=
<"”"J>_{o if i)



Examples. o V =R" (x,y) =x"Yy.

The standard basis e; = (1,0,0,...,0),

e, =(0,1,0,...,0), ..., e, = (0,0,0,...,1).
It is an orthonormal set.

o V=R3? (x,y) =
=(3,5,4), v, :( 5 4) vz = (4,0, -3).
vl-v2:O, vi-v3=0, wvy-v3=0,
vi-v; =50, wvy-vp, =50, wv3-v3=25.
Thus the set {vi,v,,v3} is orthogonal but not

orthonormal. An orthonormal set is formed by

. V1 Vo
normallvzed vectors w; = T W2 = Tl
3

lvs[”

W3 =



o V=C_C[-mm], (f,g}z/7r f(x)g(x) dx.

fi(x) =sinx, f(x) =sin2x, ..., f,(x) =sinnx, ...

(fm, fn) = /7r sin(mx) sin(nx) dx
— /_7; %(cos(mx — nx) — cos(mx + nx)) dx.

/cos(kx)dx:smikx) -

k:0:>/cos(kx)dx:/ dx = 2.

™

—0if keZ, k0.



(fms ) = %/_Z (cos(m — n)x — cos(m + n)x) dx
7 if m=n
B { 0 if m#n
Thus the set {fi, h, f5,...} is orthogonal but not

orthonormal.

It is orthonormal with respect to a scaled inner
product

(f,g) = %/W f(x)g(x) dx.

—T



Orthogonality — linear independence

Theorem Suppose vi,Vy, ...,V are nonzero
vectors that form an orthogonal set. Then
Vi,Vo, ...,V are linearly independent.

Proof: Suppose tivi + thovy + -+ teve =0
for some t1,tr, ..., tx € R.
Then for any index 1 </ < k we have

<t1v1 + vy + - - - + Ly, Vi> = <0, Vi> = 0.
—> (v, V) + t(vo, Vi) + -+t (v, vp) = 0
By orthogonality, ti{v;,v;) =0 = t; =0.



Orthonormal bases

Let vi,vs,...,v, be an orthonormal basis for an
inner product space V.
Theorem Let x = x;v; + xovy + - - - + x,v,, and

Y = YyiV1 + yoVo + - - - + yuv,, where x;,y; € R. Then
(i) (xy) =xwy1+xy + -+ Xy,
@) x| = Vo TZ T

Proof: (ii) follows from (i) when y = x.

(x,y) = <ZX:'V/7 Zijj> =Y % <v,-, ny"’j>
i=1 j=1 i=1 j=1
= ZZX;)/J'<V:',VJ> = in)/i-
i=1

i=1 j=1



Let vi,v,,...,v, be a basis for an inner product
space V.

Theorem If the basis vi,vy,...,v, is an
orthogonal set then for any x € V

_ vy o ove) o )
(v1,v1) (v2, v2) (Vn, Vi)
If vi,vo,...,v, is an orthonormal set then

X = <X7 V1>V1 + <x7 V2>V2 + e <X, Vn>Vn-

Proof: We have that x = xyv; + - -+ + X,V,.
= (x,v;) = (qqvi + -+ xvp,v), 1<i<n
= (X, V;) = x1(V1,V;) + -+ Xp(Vp, V;)

= (x,v;) = x;{v;, v;).



Orthogonal projection

Let V be an inner product space.

Let x,ve V, v#0. Then p= x,v)

(v,v)
orthogonal projection of the vector x onto the
vector v. That is, the remainder o =x—p is
orthogonal to v.

v is the

If vi,vo,...,v, is an orthogonal set of vectors then
R 7 I L 2
<V]_, V]_> <V27 V2> <Vna Vn>

is the orthogonal projection of the vector x onto
the subspace spanned by vi,...,v,. Thatis, the
remainder o = x — p is orthogonal to vi,...,v,.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = X1,
<X2,V1>
Vo = Xp — Vi,
(v1,v1)
V3 = X3 — <X3,V1>V1 _ <X3,V2>v2'
(v1,v1) (v2,v2)
V, =X, — Koo V1) o (Xn Vi) e
(v1,v1) (Vn-1,Vn-1)

Then vy,vy, ..., v, is an orthogonal basis for V.



span of X;,X, .




Any basis Orthogonal basis
X1, X2, -+, Xp V1, V2,...,Vp

Properties of the Gram-S5chmidt process:

® V, = X) — (alxl —|—"'—|—CY/<_1X/<_1), 1< k<n;

e the span of vq,..., v, is the same as the span
of xq,...,Xg;
e v, is orthogonal to x1y,...,X,_1;

® V, = X, — Pk, Where pg is the orthogonal
projection of the vector x, on the subspace spanned
by Xi,...,Xk_1;

o ||vi|| is the distance from x, to the subspace
spanned by Xi,...,Xk_1.



Normalization

Let V be a vector space with an inner product.

Suppose vi,Vy, ..., Vv, is an orthogonal basis for V.
Let w1:—,w2:L,...,wn: Vn .

v vz [vall
Then wi,ws,...,w, is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines
orthogonalization with normalization.
Suppose Xi,Xo,...,X, is a basis for an inner

product space V. Let

— —_— v
Vi = X1, W1 = FAE

— _ _—
V2 = X3 — (X2, W)W, Wy = K

_ v
V3 = X3 — (X3, W1)W1 — (X3, W2)Wp, W3 = —|v§”,
Vp = Xp <Xn7 W1>W1 - - <Xn7 Wn—1>Wn—1y

v

W, = 72

o lvall

Then wy,ws,...,w, is an orthonormal basis for V.



Problem. Let 1 be the plane in R3 spanned by
vectors x; = (1,2,2) and x, = (—1,0,2).

(i) Find an orthonormal basis for I1.

(ii) Extend it to an orthonormal basis for R3.

X1, X> is a basis for the plane 1. We can extend it
to a basis for R3 by adding one vector from the
standard basis. For instance, vectors x;, X», and
x3 = (0,0, 1) form a basis for R3 because
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Using the Gram-Schmidt process, we orthogonalize
the basis x; = (1, 2,2), xo = (—1,0,2), x3 =(0,0,1):

Vi = X1 = (1,2,2),

<X2,V1> 3
— X — —(~1,0,2) — 2(1,2,2
Vo X2 <V1,V1>V1 ( 707 ) 9(7 ) )
= (—4/3,-2/3,4/3),
V3 = X3 — <X37v1>v1 . <x37v2>v2
<V17 V1> <V27 V2>
; 4/3

= (0,0, 1)—5(1,2,2)— (—4/3,-2/3,4/3)

=(2/9,-2/9,1/9).

4



Now vi = (1,2,2), vo = (—4/3,-2/3,4/3),

v3 = (2/9,—2/9,1/9) is an orthogonal basis for R>
while v1, vs is an orthogonal basis for I1. It remains
to normalize these vectors.

(vi,v1) =9 = |jvy|| =3

(vo,vp) =4 = |[wp]| =2

(vz,v3) =1/9 = |jv3|| =1/3

wi = vi/|lvill = (1/3,2/3,2/3) = 5(1,2,2),

w2 = Vo/||vol| = (-2/3,-1/3,2/3) = %( 2,-1,2),
ws = v3/|vs]| = (2/3,-2/3,1/3) = 3(2, -2, 1)

W1, W is an orthonormal basis for [1.
W1, W, W3 is an orthonormal basis for R3.



Problem. Find the distance from the point

y = (0,0,0,1) to the subspace I C R* spanned by
vectors x; = (1,—1,1,—-1), x, =(1,1,3,-1), and
X3 = (—3, 7, 1, 3)

Let us apply the Gram-Schmidt process to vectors
X1, X2, X3,Y. We should obtain an orthogonal
system vi,Vo, V3, vy, [he desired distance will be
|Val.



x1=(1,—1,1,—1), x, = (1,1,3,-1),
x3 = (—3,7,1,3), y = (0,0,0,1).

Vi = X1 = (1, —1, ]., —1),

<X2,V1> 4
= Xp— =(1,1,3,—-1)——(1,—-1,1, -1
Vo X2 <V1,V1> 1 (7 3Dy ) 4(7 ) - )
=(0,2,2,0)
V3 = X3 — <X37V1> . <X37V2> )
(v1,v1) (v2,Vv2)

=(-3,7,1,3) — _T(l, 1,1,-1) — —(0,2,2 0)



The Gram-Schmidt process can be used to check
linear independence of vectors!

The vector x3 is a linear combination of x; and x».

I1is a plane, not a 3-dimensional subspace.
We should orthogonalize vectors xi, Xy, Y.

) v
(v1,v1) (v2,Vv2)

—1 0
=(0,0.0,1) = ~(1,-1,1,-1) - £(0,2,2,0)

1 113 1
(2 s 2 2 =21 -1.1.3) =
[val ‘(4’ 4’4’4)‘ ;11 -11,3)

Vg =

*[3
S



Problem. Find the distance from the point
z=(0,0,1,0) to the plane I that passes through
the point xo = (1,0,0,0) and is parallel to the
vectors v; = (1,—1,1,—1) and v, =(0,2,2,0).

The plane I is not a subspace of R* as it does not
pass through the origin. Let My = Span(vy, vy).
Then 1 =Tlg+ xq.

Hence the distance from the point z to the plane [1
is the same as the distance from the point z — xg
to the plane [lj.

We shall apply the Gram-Schmidt process to vectors
Vi,Vp,Z — Xg. [Ihis will yield an orthogonal system
w1, Wp, W3. The desired distance will be |ws].



vi=(1,—1,1,-1), vo = (0,2,2,0), z— xo = (—1,0,1,0).

W) = V] = (1, —]., 1, —1),

Wy = Vy — (v, wn) wi; =vp = (0,2,2,0) as vy L vy.
<W17W1>
w3 = (z2 — Xg) — (2= x0.w1) w1>w1 _ (2= xowp) W2>w2
<W17 W]_> <W2, W2>

2
(~1,0,1,0) — 2(1, 11,-1) - £(0,2.2,0)

(—1,-1/2,1/2,0).

11 1 V6 3
- _17 T AY A >‘ = A _27 _17 17 = A~ = "
wal = [(-1.-3:5:0)| = 5 N=7=V3



