MATH 311
Topics in Applied Mathematics

Lecture 20:
The Gram-Schmidt process (continued).
Review for Test 2.



Orthogonal sets

Let V be a vector space with an inner product.

Definition. Nonzero vectors vy, vy, ..., v, €V
form an orthogonal set if they are orthogonal to
each other: (v;,v;) =0 for i # j.

If, in addition, all vectors are of unit norm,

|vi]| = 1, then vy, vy, ... vi is called an
orthonormal set.

Theorem Any orthogonal set is linearly
independent.



Orthogonal projection

Theorem Let V be a finite-dimensional inner
product space and Vj be a subspace of V. Then
any vector x € V' is uniquely represented as
Xx=p+o0, where p€ Vy and o L V,.

The component p is the orthogonal projection of
the vector x onto the subspace V. The distance
from x to the subspace V; is ||o]|.

If vi,vo,...,v, is an orthogonal basis for V; then

vy (xw) (x,v2)

Vi + Vo -
<V17 V1> <V2, V2> <Vn7 Vn>

n-



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = Xy,
. <X2,V1>

Vo = X3 — Vi,
<V17V1>

V3 = X3 — <x37v1>v1 . <X37V2>V2,
<V1, V1> <V2, V2>

vo—x, KV KeVe) |
(vi,v1) (Vp—1,Vp-1)

Then vqi,vy,...,v, is an orthogonal basis for V.



span of X;,X, .




Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines
orthogonalization with normalization.

Suppose Xi,Xo,...,X, is a basis for an inner
product space V. Let

VLS XL WL

V2 = Xz — (X2, W)W, Wy = pr,

V3 = X3 — (X3, W1)W1 — (X3, W2)Wp, W3 = ﬁ

Vp = Xp <xna W1>W1 - <xn7 Wn71>wnfly
Vn

Wn = ]

Then wy,ws,...,w, is an orthonormal basis for V.



Problem. Find the distance from the point

y = (0,0,0,1) to the subspace M C R* spanned by
vectors x; = (1,—1,1,—-1), x, =(1,1,3,—1), and
X3 = (—3, 7, 1, 3)

Let us apply the Gram-Schmidt process to vectors
X1, X2, X3,Y. We should obtain an orthogonal
system vy, Vo, v3, V4. The desired distance will be

[Val.



x1 = (1,—-1,1,-1), x, = (1,1,3, 1),
x3 = (—3,7,1,3), y = (0,0,0,1).

Vi = X1 = (1, —1, 1, —1),

<X2,V1> 4
= Xp— =(1,1,3,-1)——(1,-1,1, -1
Vo X2 <V]_,V]_> (7 ) ) 4(7 )+ )
=(0,2,2,0)
V3 = X3 — <X3,V1> . <X3,V2> )
(v, v1) (v2, v2)

= (-3,7,1,3) — _T(l, 1,1,-1) — —(0,2,2 0)



The Gram-Schmidt process can be used to check
linear independence of vectors!

The vector x3 is a linear combination of x; and x.

I1is a plane, not a 3-dimensional subspace.
We should orthogonalize vectors xi, Xy, Y.

<y,V1> N <y,V2> Vo

(vivi) — (va,vo)

—1 0
=(0,0.0,1) = ~(1,~1,1,-1) - £(0,2,2,0)

1 113 1
[val ‘(4’ 4’4’4)‘ 511 -11,3)

Vg =Y —

*[3
S



Problem. Find the distance from the point
z=(0,0,1,0) to the plane I that passes through
the point xo = (1,0,0,0) and is parallel to the
vectors v; = (1,—1,1,—1) and v, = (0,2,2,0).

The plane I is not a subspace of R* as it does not
pass through the origin. Let My = Span(vy, vy).
Then T1="Tlg+ xq.

Hence the distance from the point z to the plane 1
is the same as the distance from the point z — xg
to the plane [lp.

We shall apply the Gram-Schmidt process to vectors
Vi,Vp,Z — Xg. Ihis will yield an orthogonal system
w1, Wp, W3. The desired distance will be |ws].



vi=(1,-1,1,-1), vo = (0,2,2,0), z— xo = (—1,0,1,0).

Wi =V = (].7 —]., ]., —].),

Wy = Vp — (va, W) w; =v, =(0,2,2,0) as vy L vy.
(wi, wr)
<Z — Xp, W]_> <Z — Xp, W2>
wy=(z—x9)— —— Tw; —— 1
: ( 0) <W1,W1> ! <W2,W2> ?
0 2
= (—1, 0,1, 0) — Z(l, -1,1, —1) — §(0, 2,2, 0)
= (~1,-1/2,1/2,0).
11 1 V6 3
- _17__7_a )‘:_ _27_17170 = A~ = "
wal = |(-1.-3:5:0)| = 5 =% =V



Topics for Test 2
Coordinates and linear transformations (Leon 3.5, 4.1-4.3)

Coordinates relative to a basis
Change of basis, transition matrix
Matrix transformations

Matrix of a linear mapping

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

e FEigenvalues, eigenvectors, eigenspaces
e Characteristic polynomial
e Diagonalization

Orthogonality (Leon 5.1-5.6)

e Inner products and norms

e Orthogonal complement

e |east squares problems

e The Gram-Schmidt orthogonalization process



Sample problems for Test 2

Problem 1 (15 pts.) Let M55(R) denote the vector space
of 2 x 2 matrices with real entries. Consider a linear operator
L . MQQ(R) — M272(R) given by

Eu)=Gu)GE)

Find the matrix of the operator L with respect to the basis

10 01 0 0 00
i-(o0)-5-(00) 8-(10) &= (0 1)



Problem 2 (30 pts.) Let A=

O =
N =N
== o

(i) Find all eigenvalues of the matrix A.

(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.

(iv) Find all eigenvalues of the matrix A2.

Problem 3 (20 pts.) Find a linear polynomial which is the
best least squares fit to the following data:

x | =2]-1]0]1]2

| =3 211125




Problem 4 (25 pts.) Let V be a subspace of R* spanned
by the vectors x; = (1,1,1,1) and x, = (1,0, 3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
%8

Bonus Problem 5 (15 pts.) Let L: V — W be a linear
mapping of a finite-dimensional vector space V to a vector
space W. Show that

dim Range(L) + dimker(L) = dim V.



Problem 1. Let M;,(RR) denote the vector space of 2x2
matrices with real entries. Consider a linear operator

L: Myo(R) — Myo(R) given by

(0)-(00

Find the matrix of the operator L with respect to the basis
10 01 00 00
f-o0) &= (00) 5-(10) &= (0 1)

Let M, denote the desired matrix.

By definition, M, is a 4x4 matrix whose columns are
coordinates of the matrices L(E;), L(Ey), L(E3), L(Es)
with respect to the basis Ej, B>, E3, E4.



1E1+2E,+0E3+0E,,

() (2
DIPRE
)G 3)-(2)
)( )

- 3E1+4E2+0E3+0E4,

)= (

1 2
3 4

00
00

O0E; +0Ey+1E3+2E,,

12\ B
10 34) \12)
00 00
0 1 3 4

= 0B +0E,+3E3+4E,.

)= (
|

1 2
3 4

(

It follows that

oSO mMm<
O O~ AN
N < O O

— AN O O



Thus the relation

Ee)-(u)G7)

is equivalent to the relation

X1 1 300 X
4] o 0 013 z
wy 00 2 4 w



1 2
11
0 2

(i) Find all eigenvalues of the matrix A.

0
Problem 2. Let A= 1
1

The eigenvalues of A are roots of the characteristic equation
det(A — A\l) = 0. We obtain that

1-X 2 0

det(A—M)=| 1 1-X 1
0 2 1-2)

=(1=A)°=2(1-X2)—-2(1-X)=(1-XN)(1-X1)>-4)
=(1-N(1-N=2)((1=N)+2)=-(A=1)A+1)(A-23).

Hence the matrix A has three eigenvalues: —1, 1, and 3.



Problem 2. Let A=

O =
N =N
== o

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y,z) of the matrix A associated with
an eigenvalue \ is a nonzero solution of the vector equation

1-XA 2 0 x 0
(A-AMw=0 < | 1 1-x 1 y| =10
0 2 1-)\z 0

To solve the equation, we convert the matrix A — Al to
reduced row echelon form.



First consider the case A = —1. The row reduction yields

2 20 110
A+Il=11 2 1] =11 2 1
0 2 2 0 2 2

110 110 1 0 -1
—-!1011] —-—1011)] —1]0 1 1
0 2 2 0 00O 00 O
Hence
x—z=0,
A+lv=0 — {y+z:0

The general solution is x =t, y = —t, z=1t, where t € R.
In particular, v; = (1,—1,1) is an eigenvector of A associated
with the eigenvalue —1.



Secondly, consider the case A = 1. The row reduction yields

0 20 1 01 1 01 1 01
A-I=11 01| -0 20)—({01O0})—-1]01 0]
0 20 0 20 0 2 0 0 0O

Hence

The general solution is x = —t, y =0, z=1t, where t € R.
In particular, v, = (—1,0,1) is an eigenvector of A associated

with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

-2 2 0 1 -1 0 1 -1

A-3l = 1 -2 1|]—-|1 -2 1]—1(0 -1
0o 2 =2 0 2 =2 0o 2

1 -1 0 1 -1 0 10 -1
-0 1 -1} -0 1 -1] -0 1 -1
0 2 =2 0 0 O 00 O

x—z=0,
(A=3llv=0 — {y—z:o.

The general solutionis x =t, y =t, z=1t, where t € R.
In particular, v3 =(1,1,1) is an eigenvector of A associated
with the eigenvalue 3.

0
1
-2



1 20
Problem 2. LetA=[1 1 1
0 21

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3
formed by its eigenvectors.

Namely, the vectors v; = (1,—1,1), v, = (—1,0,1), and

vz = (1,1,1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that vq,v»,v3 is a basis for R3,

Alternatively, the existence of a basis for R® consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 2. Let A=

O = =
N =N
== o

(iv) Find all eigenvalues of the matrix A2,

We have that A = UBU™!, where

[ G T g Sy
= O
—_ =

~100
B=| o010, u=][-
00 3

The columns of U are eigenvectors of A belonging to the
eigenvalues —1, 1, and 3, respectively.

Then A2 = UBU-TUBU-! = UB?U~1, that is, the matrix A?
is similar to the diagonal matrix B? = diag(1,1,9).
Similar matrices have the same characteristic polynomial,

hence they have the same eigenvalues. Thus the eigenvalues
of A? are the same as the eigenvalues of B?: 1 and 9.



Problem 3. Find a linear polynomial which is the best least
squares fit to the following data:

x | =2]-1]0[1]2
f(x)| -3]-2]1]2]5

We are looking for a function f(x) = ¢; + cx, where ¢, ¢
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables ¢;
and ¢:

(o] —2C2 = —3,
G — 6 = —2,
Clz].,

L+ = 2,
C1+2C2 =b.

This system is inconsistent.



We can represent the system as a matrix equation Ac =y,
where

1 -2 -3
1 -1 -2
A=|1 o], c_<cl>, y=1| 1
1 1 @ 2
1 2 5

The least squares solution ¢ of the above system is a solution
of the normal system AT Ac = ATy:

1 -2 -3
<1 1111>1_1<q)<1 1111)‘?
2 -1012)f; ;|\e -2 -1 0 1 2 5
1 2 5

= (0)8)-(n) = 183"

Thus the function f(x) = 2 4 2x is the best least squares fit
to the above data among linear polynomials.






Problem 4. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to
vectors x;, X, and obtain an orthogonal basis vy, v, for the
subspace V:

Vi = X1 = (1, 1, 1, 1),

X2 - V1
Vo = Xo—

4
= (1,0,3,0)—(1,1,1,1) = (0, —1,2, —1).
V1-V1v1 (7”)4(7”) (7 o )

Then we normalize vectors vy, v, to obtain an orthonormal
basis wy, w, for V:




Problem 4. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(ii) Find an orthonormal basis for the orthogonal complement
v+

Since the subspace V is spanned by vectors (1,1,1,1) and
(1,0,3,0), it is the row space of the matrix

1111
A= (1 0 3 0) '
Then the orthogonal complement V* is the nullspace of A.

To find the nullspace, we convert the matrix A to reduced row
echelon form:

1111_}1030_}10 30
1030 1111 01 -2 1)



Hence a vector (x1, X2, X3, x3) € R* belongs to V' if and only
if

10 30 x| (0
01 -21 x3 |  \O
Xa
x1+3x3=0 x1 = —3x3
{X2—2X3—|—X4:0 = {x2:2x3—x4

The general solution of the system is (x, X2, X3, X4) =
= (—3t,2t — s, t,s) = t(—3,2,1,0) + s(0,—1,0,1), where
t,s € R.

It follows that V* is spanned by vectors x3 = (0,—1,0,1)
and x4 = (—3,2,1,0).



The vectors x3 = (0,—1,0,1) and x4 = (—3,2,1,0) form a

basis for the subspace V.
It remains to orthogonalize and normalize this basis:

V3 = X3 = (0, —].,07 1),

Xg4 * V3 —2
= X4 — =(-3,2,1,0) — —(0,-1,0,1
V4 X4 V3-V3 ( 777) 2(7 77)
=(-3,1,1,1),

[vs| = V2 = W3 = IzZH = %(07 —-1,0,1),

[va| = V12=2V3 = wy= "

[|va

= 55(=3,1,1,1).

Thus the vectors w; = f(O —-1,0,1) and
wy = 2f( 3,1,1,1) form an orthonormal basis for V+.



Problem 4. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0, 3,0).
(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
v+

Alternative solution: First we extend the set x;,X, to a basis
X1, X2, X3, X4 for R*. Then we orthogonalize and normalize
the latter. This yields an orthonormal basis wy, w,, w3, wy
for R*.

By construction, wy, w, is an orthonormal basis for V.
It follows that ws, w, is an orthonormal basis for V*.



The set x; = (1,1,1,1), x, = (1,0,3,0) can be extended to
a basis for R* by adding two vectors from the standard basis.

For example, we can add vectors e; = (0,0,1,0) and

es = (0,0,0,1). To show that xi,x,,e3, e, is indeed a basis
for R*, we check that the matrix whose rows are these vectors
is nonsingular:

SEH I
0 010 00 1
0 001



To orthogonalize the basis xi, x5, e3,e4, we apply the
Gram-Schmidt process:

Vi = X1 = (1, 17 ]., 1),

X2y = (1,0,3,0)—%(1,1,1,1) = (0, 1,2, 1),
Vi -Vp

Vo = Xo—

€3 - Vg €3 - Vo 1
=(0,0,1,0) — #(1,1,1,1)—
viovil vpevg (0.0.1.0) =3(1. 1.1.1)

_%(Oa _1a2a _1) - (_%a %a %a %) - 1_12(_3a ]-7 17 1)1

€, V1 €4 - Vo €y - V3
Vi =€, — Vi — Vo — vz =(0,0,0,1)—
Vi -Vp Vo - Vo V3 - V3

—1(1,1,1,1) = 2(0,-1,2,-1) — 33 - (-3, 1,1,1) =
=(0,-1,0,3) = 1(0,-1,0,1).




It remains to normalize vectors v; = (1,1,1,1),

YA R

va=(0,-1,2, 1), vy = 1(=3,1,1,1), vs = 1(0,-1,0,1):
||V1|| =2 = Wi = m = %(1,171,1)

Hv2|| = \/6 — Wy — V2 —

Ivsll = 7z =53 = W=y =53(-3111)

HV4H = % = W4 = = %(07_17071)

Thus wy, w, is an orthonormal basis for V' while ws, wy is an
orthonormal basis for V.



Bonus Problem 5. Let L: V — W be a linear mapping of
a finite-dimensional vector space V to a vector space W.
Show that dim Range(L) + dimker(L) = dim V.

The kernel ker(L) is a subspace of V. It is finite-dimensional
since the vector space V is.

Take a basis vy, vy, ..., v, for the subspace ker(L), then
extend it to a basis vi,Vs, ..., Vi, Uy, Uy, ..., U, for the entire
space V.

Claim Vectors L(uy),L(uz),...,L(uy,) form a basis for the
range of L.

Assuming the claim is proved, we obtain
dimRange(L) = m, dimker(L) =k, dimV =k+m.



Claim Vectors L(uy),L(uz),...,L(uy,) form a basis for the
range of L.

Proof (spanning): Any vector w € Range(L) is represented
as w = L(v), where v V. Then

V = 1Vi + aoVp + - - Vi + Brug + Boup + - - 4 Bpup,
for some «;, B; € R. It follows that
w = L(v) = aiL(vi)+---+axl(vi)+GiL(ur)+- - -+ Bml(unm)
= G1l(uy) + - - + Bml(uny).

Note that L(v;) = 0 since v; € ker(L).
Thus Range(L) is spanned by the vectors L(uy),..., L(un).



Claim Vectors L(uy), L(uy),...,L(u,) form a basis for the
range of L.

Proof (linear independence): Suppose that
tiL(uy) + toL(u) + -+ + tl(uy) =0
for some t; € R. Let u= tju; + tbup, + - - - + t,u,,. Since
L(u) = t1L(uy) + toL(up) + - - - + tymL(u,) = 0,

the vector u belongs to the kernel of L. Therefore
U= 5Vi + SHVp + - - + v, for some s; € R. It follows that

tiup+buy+-- -4+ tpU,y — SV —SHVo— - - — S5 Ve = uU—U = 0
Linear independence of vectors vi, ...,V ug,...,u, implies
that t; =---=1t, =0 (aswell as s; =--- =5, =0).

Thus the vectors L(uy), L(uz), ..., L(us,) are linearly

independent.



