MATH 311
Topics in Applied Mathematics

Lecture 22:
Fourier’s solution of the heat equation.
Fourier series.



PDEs: two variables

heat equation:

wave equation:

Laplace's equation:
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These equations are linear homogeneous.



One-dimensional heat equation

Describes heat conduction in a rod:

ou 0 ou
Pt = Ix <K0§> + Q

Ko = Ko(x), ¢ = c(x), p = p(x), Q@ = Q(x, t).

Assuming Kj, c, p are constant (uniform rod) and
Q = 0 (no heat sources), we obtain

ou p 0%u
ot Ox?

where k = Ko(cp)™! is called thermal diffusivity.



Initial and boundary conditions
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ot  Ox?'

Initial condition: u(x,0) = f(x), x1 < x < xp.

x1 < x < Xxp.

Examples of boundary conditions:
o u(xy,t)=u(x,t)=0.
(constant temperature at the ends)

° %(Xl, t) = %(Xz, t) =0.

(insulated ends)

o u(xi,t)=ulx,t), E(x,t)=2(x0,t).
(periodic boundary conditions)



Heat conduction in a thin circular ring



Separation of variables

The method applies to certain linear PDEs, for
example, heat equation, wave equation, Laplace's
equation.

Basic idea: to find a solution of the PDE (function
of many variables) as the product of several
functions, each depending only on one variable.

For example, u(x, t) = B(x)C(t).



Heat equation
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Suppose u(x,t) = ¢(x)g(t) is a solution. Then
% = —\o,
dt = —\kg,

where )\ is a separation constant.

Conversely, if ¢ and g are solutions of the above
ODEs for the same value of A, then

u(x, t) = ¢(x)g(t) is a solution of the heat
equation.



Boundary value problem for the heat equation
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u(0,t) = u(L,t) =0.

0<x<IL,

We are looking for solutions u(x, t) = ¢(x)g(t).
PDE holds if

9= 2o,
d,
o= —Akg

for the same constant ).

Boundary conditions hold if

¢(0) = (L) =



Boundary value problem:
d?¢
W = —)\¢, 0 S X S L,

¢(0) = ¢(L) =0

We are looking for a nonzero solution.

This is an eigenvalue problem, L(¢) = Agb for a
linear operator L: V — W, where L = — (in

V ={¢ e C?[0,L] : ¢(0) = ¢(L) = 0},

W = CJ0, L].

The eigenvalue problem is to find all eigenvalues
(and associated eigenfunctions).



Eigenvalue problem

¢" =—=Ap,  ¢(0) =¢(L) =0.

We are looking only for real eigenvalues.
Three cases: A >0, A =0, A <0.
Case 1: A > 0. ¢(x) = G cospux + Cysin px,

where A = 12, > 0.
»(0)=¢(L)=0 = (G =0, GsinuL=0.
A nonzero solution exists if uL = nm, n € Z.
So Ay = (“F)? n=1,2,... are eigenvalues and

nmx

¢n(x) = sin = are corresponding eigenfunctions.



Eigenfunctions

Are there other eigenfunctions?



Case 2: A =0. o(x) = G + Gx.

¢(0):¢(L):0_—_>C1:C1+C2L:0

— Cl = C2 =0.

Case 3: A < 0. o(x) = Ge™ + Ge™,
where A\ = —pu2, > 0.

z 4

e +e? sinh e —e
inhz =
2 2

e = coshz +sinhz, e %= coshz — sinhz.
@(x) = Dy cosh pux + Dy sinh ux, Dy, D, = const.
»(0)=0 = D; =0

#(L)=0 = D,sinhul=0 = D, =0

cosh z =




Hyperbolic functions

cosh z\ /
sinh z




Summary
Eigenvalue problem: ¢ = —X¢, ¢(0) = ¢(L) = 0.
Eigenvalues: A\, = (%)%, n=1,2,...

Eigenfunctions: ¢,(x) = sin 7=

Solution of the heat equation: u(x,t) = ¢(x)g(t).
% — _N\kg = g(t) = Cyexp(—\kt)

dt
Theorem For n=1,2,..., the function
u(x, t) = e Mk, (x) = exp(—”i@r2 kt) sin 7%

is a solution of the following boundary value
problem for the heat equation:
du P 0%u

E = ﬁ' U(O, t) = U(L, t) =0.



Initial-boundary value problem
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u(x,0) = f(x), wu(0,t)=u(L,t)=0.

0< x<IL,

Function u(x, t) = e **¢,(x) is a solution of the
boundary value problem. Initial condition is satisfied
if f =¢,. Forany By, B,, ..., By € R the function

u(x, t) = ZnN_l B,e " ¢ ,(x)

is also a solution of the boundary value problem.
This time the initial condition is satisfied if

f(x) = Z:l_l Bnon(x) = Z:I_l B, sin MTX



From finite sums to series

Conjecture For suitably chosen coefficients
B, B>, Bs, ... the function

u(x,t) = Y Bue Mg, (x)

is a solution of the boundary value problem. This
solution satisfies the initial condition with

()= Buon(x) = Bysin ”iLX

Theorem |If > ° |B,| < co then the conjecture is
true. Namely, u(x, t) is smooth for t > 0 and solves
the boundary value problem. Also, u(x,t) is
continuous for t > 0 and satisfies the initial
condition.



How do we solve the initial-boundary value problem?
o,
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u(x,0) = f(x), u(0,t) =u(L,t)=0.

0< x<IL,

e Expand the function f into a series
00 . nmx
f(x) = Zn:1 B, sin -

e \Write the solution:
2 2

u(x, t) = Z:O:l B, exp(—nL—Zkt) sin mTTX

J. Fourier, The Analytical Theory of Heat
(written in 1807, published in 1822)



Orthogonal sets

Suppose V is an inner product space and

Vi,Vo,...,V, is an orthogonal set in V. For any
xeV let
X, V X, V X, V
p= Vi V) K)o
<V1, V1> <V27 V2> <Vn7 Vn>

Then p is the orthogonal projection of x onto
Span(vy,...,v,). Also, p is the best approximation
of x by linear combinations c;vi + vy + -+ - + ¢,V
relative to the distance

dist(x,y) = [ly — x|| = \/{y —x,y — x).




V=C[-mn|, (f,g)= /ﬂ f(x)g(x) dx.

-7

fi(x) =sinx, fr(x) =sin2x, ..., fy(x) =sinnx, ...
A : |0, n#m,

(fp, fm) = /_7T sin(nx) sin(mx) = {77, P

fi, f, ... is an orthogonal set.

For any function F € C[—m, 7] consider a series

Ff) gy Fubp oo (FB) o
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0 3y 0 (0

= bysinx + bysin2x + b3sin3x + ...,

1 s
where b,,:—/ F(y)sin(ny) dy.

n m

Theorem The above series converges to some
function G € C[—m, 7| with respect to the distance

dis(r.g) = 1 gl = (1700~ 00 o) -

Since sin(—nx) = —sin(nx), it follows that

G(—x) = —G(x).



Example. F(x) = e*.

In this case, the series converges to the function
G(x) =sinhx. Note that G(x) = 2(F(x) + F(—x)).

hi(x) = cosx, hy(x) =cos2x, ..., h,(x) =cosnx, ...
" [0, n#m,
(hp, hy) = /_7T cos(nx) cos(mx) = {W; PR
hy, hy, ... is an orthogonal set.

For any function F € C[—m, ] consider a series

(F, hy) (F hy) (Foh),
<h1 > 1( ) < >h2( ) < ,h3> 3( )+




(F, hy) (F, ) (F, h3)
<h1,h1>h1(x) (h2, h >h( )+ <h3,h3>h ) +

= 31 COSX + apcos2x + azcos3x + ...,

1 ™
where a, = —/ F(y)cos(ny) dy.
m
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Theorem The above series converges to some
function H € C[—m, ] with respect to the distance

dist(f, g) = [|f — gll.

Since cos(—nx) = cos(nx), it follows that
H(—x) = H(x). Since [" cos(nx)dx =0, it
follows that [ H(x) dx = 0.



Example. F(x) = e*.

In this case, the series converges to the function
H(x) = cosh x — = tsinh .

This is an orthogonal set: (hg, hy) = 2,

(hp, hy) = (fp, f,) = for n > 1, while the other
inner products are equal to 0.

This orthogonal set is maximal.



Fourier series
Definition. Fourier series is a series of the form

o0 o0 .
aop + g 1a,,cosnx—k g 1b,,smnx.
n= n=

To each integrable function F : [—7m, 7] — R we
associate a Fourier series such that

1 i
aozg 7rF(X)dX
and for n > 1,
1 Y
ap, = —/ F(x) cos nx dx,
m —T

b, = 1/ F(x) sin nx dx.

™ —T



Convergence theorems

Theorem 1 Fourier series of a continuous function
on [—m, 7| converges to this function with respect
to the distance

() = 1~ gll = (1700~ g0 o) -

—T

However convergence in the sense of Theorem 1
need not imply pointwise convergence.

Theorem 2 Fourier series of a smooth function on
[, m] converges pointwise to this function on the
open interval (—m, ).



Example. Fourier series of the function F(x) = x.

1 (7 1 (7
ag=—[ xdx=0, a,,:—/ x cos(nx) dx = 0.
2 ),

™ —T
b, = — xsin(nx)dx = —— [ x(cos nx)" dx
T ) x nm J_.
1 m 1 [
= ——xcos(nx) | +— [ cosnxdx
nm —T nm J_,

1 2
* 2 — 1 n+1 0
= n Tl COS(I’NZ) ( ) n



Example. Fourier series of the function F(x) = x.

0 i1 SIN NX
2 Zn:1 (_1) +1

n

1 1 1
=2 (sinx—Esin2x+§sin3x—Zsin4x+--->

The series converges to the function F(x) for any
—m < X < .

For x = m/2 we obtain:

7T_1 1+1
4 3 5

Ly
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