MATH 311

Topics in Applied Mathematics

Lecture 22:

Fourier's solution of the heat equation. Fourier series.

PDEs: two variables

heat equation:
$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

wave equation:
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Laplace's equation:
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

These equations are **linear homogeneous**.

One-dimensional heat equation

Describes heat conduction in a rod:

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(K_0 \frac{\partial u}{\partial x} \right) + Q$$

$$K_0 = K_0(x), c = c(x), \rho = \rho(x), Q = Q(x, t).$$

Assuming K_0 , c, ρ are constant (uniform rod) and Q=0 (no heat sources), we obtain

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

where $k = K_0(c\rho)^{-1}$ is called thermal diffusivity.

Initial and boundary conditions

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \qquad x_1 \le x \le x_2.$$

Initial condition: $u(x,0) = f(x), x_1 \le x \le x_2$.

Examples of boundary conditions:

•
$$u(x_1, t) = u(x_2, t) = 0.$$

(constant temperature at the ends)

$$\bullet \ \frac{\partial u}{\partial x}(x_1,t) = \frac{\partial u}{\partial x}(x_2,t) = 0.$$

(insulated ends)

•
$$u(x_1, t) = u(x_2, t)$$
, $\frac{\partial u}{\partial x}(x_1, t) = \frac{\partial u}{\partial x}(x_2, t)$. (periodic boundary conditions)

Heat conduction in a thin circular ring

Separation of variables

The method applies to certain linear PDEs, for example, heat equation, wave equation, Laplace's equation.

Basic idea: to find a solution of the PDE (function of many variables) as the product of several functions, each depending only on one variable.

For example, u(x, t) = B(x)C(t).

Heat equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

Suppose $u(x,t)=\phi(x)g(t)$ is a solution. Then $\frac{d^2\phi}{dx^2}=-\lambda\phi,$ $\frac{dg}{dt}=-\lambda kg,$

where λ is a **separation constant**.

Conversely, if ϕ and g are solutions of the above ODEs for the same value of λ , then $u(x,t)=\phi(x)g(t)$ is a solution of the heat equation.

Boundary value problem for the heat equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \qquad 0 \le x \le L,$$
$$u(0, t) = u(L, t) = 0.$$

We are looking for solutions $u(x, t) = \phi(x)g(t)$.

PDE holds if

$$\frac{d^2\phi}{dx^2} = -\lambda\phi,$$

$$\frac{dg}{dt} = -\lambda kg$$

for the same constant λ .

Boundary conditions hold if

$$\phi(\mathsf{0}) = \phi(\mathsf{L}) = \mathsf{0}.$$

Boundary value problem:

$$\frac{d^2\phi}{dx^2} = -\lambda\phi, \qquad 0 \le x \le L,$$
$$\phi(0) = \phi(L) = 0.$$

We are looking for a nonzero solution.

This is an **eigenvalue problem**, $L(\phi) = \lambda \phi$, for a linear operator $L: V \to W$, where $L = -\frac{d^2}{dx^2}$, $V = \{\phi \in C^2[0, L]: \phi(0) = \phi(L) = 0\}$, W = C[0, L].

The eigenvalue problem is to find all eigenvalues (and associated eigenfunctions).

Eigenvalue problem

$$\phi'' = -\lambda \phi, \quad \phi(0) = \phi(L) = 0.$$

We are looking only for real eigenvalues.

Three cases: $\lambda > 0$, $\lambda = 0$, $\lambda < 0$.

Case 1:
$$\lambda > 0$$
. $\phi(x) = C_1 \cos \mu x + C_2 \sin \mu x$, where $\lambda = \mu^2$, $\mu > 0$.

$$\phi(0) = \phi(L) = 0 \implies C_1 = 0, C_2 \sin \mu L = 0.$$

A nonzero solution exists if $\mu L = n\pi$, $n \in \mathbb{Z}$.

So $\lambda_n = (\frac{n\pi}{L})^2$, n = 1, 2, ... are eigenvalues and $\phi_n(x) = \sin \frac{n\pi x}{L}$ are corresponding eigenfunctions.

Eigenfunctions

Are there other eigenfunctions?

Case 2:
$$\lambda = 0$$
. $\phi(x) = C_1 + C_2 x$.

$$\phi(0) = \phi(L) = 0 \implies C_1 = C_1 + C_2 L = 0$$

$$\implies C_1 = C_2 = 0.$$

$$\implies \mathcal{C}_1 = \mathcal{C}_2 = 0.$$
Case 3: $\lambda < 0$. $\phi(x) = \mathcal{C}_1 e^{\mu x} + \mathcal{C}_2 e^{-\mu x}$,

where
$$\lambda=-\mu^2,\ \mu>0.$$

$$\cosh z=\frac{e^z+e^{-z}}{2} \qquad \sinh z=\frac{e^z-e^{-z}}{2}$$

 $e^z = \cosh z + \sinh z$, $e^{-z} = \cosh z - \sinh z$.

$$\phi(x) = D_1 \cosh \mu x + D_2 \sinh \mu x$$
, $D_1, D_2 = \text{const.}$
 $\phi(0) = 0 \implies D_1 = 0$

$$\phi(0) = 0 \implies D_1 = 0$$
 $\phi(L) = 0 \implies D_2 \sinh \mu L = 0 \implies D_2 = 0$

Hyperbolic functions

Summary

Eigenvalue problem: $\phi'' = -\lambda \phi$, $\phi(0) = \phi(L) = 0$.

Eigenvalues: $\lambda_n = (\frac{n\pi}{I})^2$, n = 1, 2, ...

Eigenfunctions: $\phi_n(x) = \sin \frac{n\pi x}{l}$.

Solution of the heat equation: $u(x, t) = \phi(x)g(t)$.

$$rac{dg}{dt} = -\lambda kg \implies g(t) = C_0 \exp(-\lambda kt)$$

Theorem For n = 1, 2, ..., the function

$$u(x,t) = e^{-\lambda_n kt} \phi_n(x) = \exp(-\frac{n^2 \pi^2}{L^2} kt) \sin \frac{n\pi x}{L}$$

is a solution of the following boundary value problem for the heat equation:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad u(0,t) = u(L,t) = 0.$$

Initial-boundary value problem

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \qquad 0 \le x \le L,$$

$$u(x,0) = f(x), \quad u(0,t) = u(L,t) = 0.$$

Function $u(x,t)=e^{-\lambda_n kt}\phi_n(x)$ is a solution of the boundary value problem. Initial condition is satisfied if $f=\phi_n$. For any $B_1,B_2,\ldots,B_N\in\mathbb{R}$ the function

$$u(x,t) = \sum_{n=1}^{N} B_n e^{-\lambda_n kt} \phi_n(x)$$

is also a solution of the boundary value problem.

This time the initial condition is satisfied if

$$f(x) = \sum_{n=1}^{N} B_n \phi_n(x) = \sum_{n=1}^{N} B_n \sin \frac{n\pi x}{I}.$$

From finite sums to series

Conjecture For suitably chosen coefficients B_1, B_2, B_3, \ldots the function

$$u(x,t) = \sum_{n=1}^{\infty} B_n e^{-\lambda_n kt} \phi_n(x)$$

is a solution of the boundary value problem. This solution satisfies the initial condition with

$$f(x) = \sum_{n=1}^{\infty} B_n \phi_n(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L}.$$

Theorem If $\sum_{n=1}^{\infty} |B_n| < \infty$ then the conjecture is true. Namely, u(x,t) is smooth for t>0 and solves the boundary value problem. Also, u(x,t) is continuous for $t\geq 0$ and satisfies the initial condition.

How do we solve the initial-boundary value problem?

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \qquad 0 \le x \le L,$$

$$u(x,0) = f(x), \quad u(0,t) = u(L,t) = 0.$$

• Expand the function f into a series $n\pi x$

$$f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L}.$$

Write the solution:

$$u(x,t) = \sum_{n=1}^{\infty} B_n \exp\left(-\frac{n^2 \pi^2}{L^2} kt\right) \sin\frac{n\pi x}{L}.$$

J. Fourier, The Analytical Theory of Heat (written in 1807, published in 1822)

Orthogonal sets

Suppose V is an inner product space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal set in V. For any $\mathbf{x} \in V$ let

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

Then **p** is the orthogonal projection of **x** onto $\operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Also, **p** is the best approximation of **x** by linear combinations $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$ relative to the distance

$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\| = \sqrt{\langle \mathbf{y} - \mathbf{x}, \mathbf{y} - \mathbf{x} \rangle}.$$

$$f_1(x) = \sin x$$
, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

function
$$F \in C[-\pi, \pi]$$
 consider a series

For any function
$$F \in C[-\pi, \pi]$$
 consider a series
$$\frac{\langle F, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1(x) + \frac{\langle F, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2(x) + \frac{\langle F, f_3 \rangle}{\langle f_3, f_3 \rangle} f_3(x) + \cdots$$

 $V = C[-\pi, \pi], \ \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$

 $\langle f_n, f_m \rangle = \int_{-\infty}^{\infty} \sin(nx) \sin(mx) = \begin{cases} 0, & n \neq m, \\ \pi, & n = m. \end{cases}$

 f_1, f_2, \ldots is an orthogonal set.

$$\frac{\langle F, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1(x) + \frac{\langle F, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2(x) + \frac{\langle F, f_3 \rangle}{\langle f_3, f_3 \rangle} f_3(x) + \cdots$$

$$= b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \ldots,$$

Theorem The above series converges to some function $G \in C[-\pi, \pi]$ with respect to the distance

where $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(y) \sin(ny) dy$.

$$\operatorname{dist}(f,g) = \|f - g\| = \left(\int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx \right)^{1/2}.$$

Since sin(-nx) = -sin(nx), it follows that G(-x) = -G(x).

Example. $F(x) = e^x$.

In this case, the series converges to the function $G(x) = \sinh x$. Note that $G(x) = \frac{1}{2} (F(x) + F(-x))$.

$$h_1(x) = \cos x, \ h_2(x) = \cos 2x, \dots, \ h_n(x) = \cos nx, \dots$$

$$\langle h_n, h_m \rangle = \int_{-\pi}^{\pi} \cos(nx) \cos(mx) = \begin{cases} 0, & n \neq m, \\ \pi, & n = m. \end{cases}$$

 h_1, h_2, \ldots is an orthogonal set.

For any function
$$F \in C[-\pi, \pi]$$
 consider a series
$$\frac{\langle F, h_1 \rangle}{\langle h_1, h_1 \rangle} h_1(x) + \frac{\langle F, h_2 \rangle}{\langle h_2, h_2 \rangle} h_2(x) + \frac{\langle F, h_3 \rangle}{\langle h_3, h_3 \rangle} h_3(x) + \cdots$$

$$\frac{\langle F, h_1 \rangle}{\langle h_1, h_1 \rangle} h_1(x) + \frac{\langle F, h_2 \rangle}{\langle h_2, h_2 \rangle} h_2(x) + \frac{\langle F, h_3 \rangle}{\langle h_3, h_3 \rangle} h_3(x) + \cdots$$

$$= a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \ldots,$$

where $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(y) \cos(ny) dy$.

Theorem The above series converges to some function $H \in C[-\pi, \pi]$ with respect to the distance $\operatorname{dist}(f, g) = \|f - g\|$.

Since $\cos(-nx) = \cos(nx)$, it follows that H(-x) = H(x). Since $\int_{-\pi}^{\pi} \cos(nx) dx = 0$, it follows that $\int_{-\pi}^{\pi} H(x) dx = 0$.

Example. $F(x) = e^x$.

In this case, the series converges to the function $H(x) = \cosh x - \pi^{-1} \sinh \pi$.

$$h_0(x) = 1$$
, $h_1(x) = \cos x$, ..., $h_n(x) = \cos nx$, ..., $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

This is an orthogonal set: $\langle h_0, h_0 \rangle = 2\pi$, $\langle h_n, h_n \rangle = \langle f_n, f_n \rangle = \pi$ for $n \geq 1$, while the other inner products are equal to 0.

This orthogonal set is **maximal**.

Fourier series

Definition. Fourier series is a series of the form

$$a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx.$$

To each integrable function $F:[-\pi,\pi]\to\mathbb{R}$ we associate a Fourier series such that

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) \, dx$$

and for $n \geq 1$,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos nx \, dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin nx \, dx.$$

Convergence theorems

Theorem 1 Fourier series of a continuous function on $[-\pi,\pi]$ converges to this function with respect to the distance

$$\operatorname{dist}(f,g) = \|f-g\| = \left(\int_{-\pi}^{\pi} |f(x)-g(x)|^2 dx\right)^{1/2}.$$

However convergence in the sense of Theorem 1 need not imply pointwise convergence.

Theorem 2 Fourier series of a smooth function on $[-\pi, \pi]$ converges pointwise to this function on the open interval $(-\pi, \pi)$.

Example. Fourier series of the function F(x) = x.

Example. Tourier series of the function
$$T(x) = x$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) \, dx = 0.$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi} x \, dx = 0, \quad a_n = \frac{1}{\pi} \int_{-\pi} x \cos(nx) \, dx = 0$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) \, dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) \, dx = -\frac{1}{n\pi} \int_{-\pi}^{\pi} x (\cos nx)' \, dx$$

 $= -\frac{1}{n\pi} x \cos(nx) \Big|_{-\pi}^{\pi} + \frac{1}{n\pi} \int_{-\pi}^{\pi} \cos nx \, dx$

 $= -\frac{1}{n\pi} \cdot 2\pi \cos(n\pi) = (-1)^{n+1} \frac{2}{\pi}.$

Example. Fourier series of the function F(x) = x.

$$2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n}$$

$$= 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \cdots\right)$$

The series converges to the function F(x) for any $-\pi < x < \pi$.

For $x = \pi/2$ we obtain:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$